Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from transformers import pipeline | |
from datasets import load_dataset | |
import soundfile as sf | |
import torch | |
from asr import transcribe_auto # ASR function | |
# Initialize Chat Model | |
chat_client = InferenceClient("Futuresony/future_ai_12_10_2024.gguf") | |
# Initialize Facebook TTS Model | |
tts_synthesizer = pipeline("text-to-speech", model="Futuresony/Output") | |
# Load Speaker Embeddings for TTS | |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") | |
speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) | |
def speech_to_chat(audio, history, system_message, max_tokens, temperature, top_p): | |
# Step 1: Transcribe Speech to Text | |
transcribed_text = transcribe_auto(audio) | |
# Step 2: Generate Chat Response | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": transcribed_text}) | |
response = "" | |
for msg in chat_client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = msg.choices[0].delta.content | |
response += token | |
# Step 3: Convert Chat Response to Speech | |
speech = tts_synthesizer(response, forward_params={"speaker_embeddings": speaker_embedding}) | |
output_file = "generated_speech.wav" | |
sf.write(output_file, speech["audio"], samplerate=speech["sampling_rate"]) | |
# Update Chat History | |
history.append((transcribed_text, response)) | |
# Return transcribed text, chatbot response, generated speech, and updated history | |
return transcribed_text, response, output_file, history | |
# Gradio Interface | |
with gr.Blocks() as demo: | |
gr.Markdown("<h2 style='text-align: center;'>Real-time ASR β Chat β TTS</h2>") | |
with gr.Row(): | |
audio_input = gr.Audio(source="microphone", type="filepath", label="π€ Speak Here") | |
transcribed_text_output = gr.Textbox(label="π Transcribed Text", interactive=False) | |
chat_response_output = gr.Textbox(label="π€ AI Response", interactive=False) | |
audio_output = gr.Audio(label="π AI Speech Output") | |
submit_button = gr.Button("ποΈ Speak & Generate Response") | |
system_msg = gr.Textbox(value="You are a friendly chatbot.", label="System Message") | |
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max New Tokens") | |
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") | |
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p") | |
chat_history = gr.State([]) # Store conversation history | |
submit_button.click( | |
fn=speech_to_chat, | |
inputs=[audio_input, chat_history, system_msg, max_tokens, temperature, top_p], | |
outputs=[transcribed_text_output, chat_response_output, audio_output, chat_history], | |
) | |
# Run the App | |
if __name__ == "__main__": | |
demo.launch() | |