Spaces:
Running
Running
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import os | |
| import re | |
| import tempfile | |
| import torch | |
| import sys | |
| import gradio as gr | |
| import numpy as np | |
| from huggingface_hub import hf_hub_download | |
| # Setup TTS env | |
| if "vits" not in sys.path: | |
| sys.path.append("vits") | |
| from vits import commons, utils | |
| from vits.models import SynthesizerTrn | |
| TTS_LANGUAGES = {} | |
| with open(f"data/tts/all_langs.tsv") as f: | |
| for line in f: | |
| iso, name = line.split(" ", 1) | |
| TTS_LANGUAGES[iso.strip()] = name.strip() | |
| class TextMapper(object): | |
| def __init__(self, vocab_file): | |
| self.symbols = [ | |
| x.replace("\n", "") for x in open(vocab_file, encoding="utf-8").readlines() | |
| ] | |
| self.SPACE_ID = self.symbols.index(" ") | |
| self._symbol_to_id = {s: i for i, s in enumerate(self.symbols)} | |
| self._id_to_symbol = {i: s for i, s in enumerate(self.symbols)} | |
| def text_to_sequence(self, text, cleaner_names): | |
| """Converts a string of text to a sequence of IDs corresponding to the symbols in the text. | |
| Args: | |
| text: string to convert to a sequence | |
| cleaner_names: names of the cleaner functions to run the text through | |
| Returns: | |
| List of integers corresponding to the symbols in the text | |
| """ | |
| sequence = [] | |
| clean_text = text.strip() | |
| for symbol in clean_text: | |
| symbol_id = self._symbol_to_id[symbol] | |
| sequence += [symbol_id] | |
| return sequence | |
| def uromanize(self, text, uroman_pl): | |
| iso = "xxx" | |
| with tempfile.NamedTemporaryFile() as tf, tempfile.NamedTemporaryFile() as tf2: | |
| with open(tf.name, "w") as f: | |
| f.write("\n".join([text])) | |
| cmd = f"perl " + uroman_pl | |
| cmd += f" -l {iso} " | |
| cmd += f" < {tf.name} > {tf2.name}" | |
| os.system(cmd) | |
| outtexts = [] | |
| with open(tf2.name) as f: | |
| for line in f: | |
| line = re.sub(r"\s+", " ", line).strip() | |
| outtexts.append(line) | |
| outtext = outtexts[0] | |
| return outtext | |
| def get_text(self, text, hps): | |
| text_norm = self.text_to_sequence(text, hps.data.text_cleaners) | |
| if hps.data.add_blank: | |
| text_norm = commons.intersperse(text_norm, 0) | |
| text_norm = torch.LongTensor(text_norm) | |
| return text_norm | |
| def filter_oov(self, text, lang=None): | |
| text = self.preprocess_char(text, lang=lang) | |
| val_chars = self._symbol_to_id | |
| txt_filt = "".join(list(filter(lambda x: x in val_chars, text))) | |
| return txt_filt | |
| def preprocess_char(self, text, lang=None): | |
| """ | |
| Special treatement of characters in certain languages | |
| """ | |
| if lang == "ron": | |
| text = text.replace("ț", "ţ") | |
| print(f"{lang} (ț -> ţ): {text}") | |
| return text | |
| def synthesize(text=None, lang=None, speed=None): | |
| if speed is None: | |
| speed = 1.0 | |
| lang_code = lang.split()[0].strip() | |
| vocab_file = hf_hub_download( | |
| repo_id="facebook/mms-tts", | |
| filename="vocab.txt", | |
| subfolder=f"models/{lang_code}", | |
| ) | |
| config_file = hf_hub_download( | |
| repo_id="facebook/mms-tts", | |
| filename="config.json", | |
| subfolder=f"models/{lang_code}", | |
| ) | |
| g_pth = hf_hub_download( | |
| repo_id="facebook/mms-tts", | |
| filename="G_100000.pth", | |
| subfolder=f"models/{lang_code}", | |
| ) | |
| if torch.cuda.is_available(): | |
| device = torch.device("cuda") | |
| elif ( | |
| hasattr(torch.backends, "mps") | |
| and torch.backends.mps.is_available() | |
| and torch.backends.mps.is_built() | |
| ): | |
| device = torch.device("mps") | |
| else: | |
| device = torch.device("cpu") | |
| print(f"Run inference with {device}") | |
| assert os.path.isfile(config_file), f"{config_file} doesn't exist" | |
| hps = utils.get_hparams_from_file(config_file) | |
| text_mapper = TextMapper(vocab_file) | |
| net_g = SynthesizerTrn( | |
| len(text_mapper.symbols), | |
| hps.data.filter_length // 2 + 1, | |
| hps.train.segment_size // hps.data.hop_length, | |
| **hps.model, | |
| ) | |
| net_g.to(device) | |
| _ = net_g.eval() | |
| _ = utils.load_checkpoint(g_pth, net_g, None) | |
| is_uroman = hps.data.training_files.split(".")[-1] == "uroman" | |
| if is_uroman: | |
| uroman_dir = "uroman" | |
| assert os.path.exists(uroman_dir) | |
| uroman_pl = os.path.join(uroman_dir, "bin", "uroman.pl") | |
| text = text_mapper.uromanize(text, uroman_pl) | |
| text = text.lower() | |
| text = text_mapper.filter_oov(text, lang=lang) | |
| stn_tst = text_mapper.get_text(text, hps) | |
| with torch.no_grad(): | |
| x_tst = stn_tst.unsqueeze(0).to(device) | |
| x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(device) | |
| hyp = ( | |
| net_g.infer( | |
| x_tst, | |
| x_tst_lengths, | |
| noise_scale=0.667, | |
| noise_scale_w=0.8, | |
| length_scale=1.0 / speed, | |
| )[0][0, 0] | |
| .cpu() | |
| .float() | |
| .numpy() | |
| ) | |
| hyp = (hyp * 32768).astype(np.int16) | |
| return (hps.data.sampling_rate, hyp), text | |
| TTS_EXAMPLES = [ | |
| ["I am going to the store.", "eng (English)", 1.0], | |
| ["안녕하세요.", "kor (Korean)", 1.0], | |
| ["क्या मुझे पीने का पानी मिल सकता है?", "hin (Hindi)", 1.0], | |
| ["Tanış olmağıma çox şadam", "azj-script_latin (Azerbaijani, North)", 1.0], | |
| ["Mu zo murna a cikin ƙasar.", "hau (Hausa)", 1.0], | |
| ] |