import gradio as gr import numpy as np import random from diffusers import DiffusionPipeline, DDPMPipeline, DDPMScheduler import torch device = "cuda" if torch.cuda.is_available() else "cpu" noise_scheduler = DDPMScheduler(num_train_timesteps=1000) if torch.cuda.is_available(): torch.cuda.max_memory_allocated(device=device) pipe = DDPMPipeline.from_pretrained("FrozenScar/cartoon_face", torch_dtype=torch.float16, variant="fp16", use_safetensors=True,scheduler=noise_scheduler) pipe.enable_xformers_memory_efficient_attention() pipe = pipe.to(device) else: pipe = DDPMPipeline.from_pretrained("FrozenScar/cartoon_face", scheduler=noise_scheduler, use_safetensors=True) pipe = pipe.to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 def infer(num_inference_steps,prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale): #if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) image = pipe(generator=generator,num_inference_steps=num_inference_steps).images[0] return image examples = [ "OK broo", "Nothing brooo" ] css=""" #col-container { margin: 0 auto; max-width: 520px; } """ if torch.cuda.is_available(): power_device = "GPU" else: power_device = "CPU" with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f""" # FACE GENERATOR Currently running on {power_device}. """) with gr.Row(): num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=20, step=1, value=6, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) # with gr.Accordion("Advanced Settings", open=False): # negative_prompt = gr.Text( # label="Negative prompt", # max_lines=1, # placeholder="Enter a negative prompt", # visible=False, # ) # seed = gr.Slider( # label="Seed", # minimum=0, # maximum=MAX_SEED, # step=1, # value=0, # ) # randomize_seed = gr.Checkbox(label="Randomize seed", value=True) # with gr.Row(): # width = gr.Slider( # label="Width", # minimum=256, # maximum=MAX_IMAGE_SIZE, # step=32, # value=512, # ) # height = gr.Slider( # label="Height", # minimum=256, # maximum=MAX_IMAGE_SIZE, # step=32, # value=512, # ) # with gr.Row(): # guidance_scale = gr.Slider( # label="Guidance scale", # minimum=0.0, # maximum=10.0, # step=0.1, # value=0.0, # ) # num_inference_steps = gr.Slider( # label="Number of inference steps", # minimum=1, # maximum=120, # step=1, # value=2, # ) # gr.Examples( # examples = examples, # inputs = [prompt] # ) run_button.click( fn = infer, inputs = [ num_inference_steps], outputs = [result] ) demo.queue().launch()