Spaces:
Runtime error
Runtime error
File size: 22,967 Bytes
81ecb2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import time
import torch
import torch.nn as nn
from torch.autograd import Function
import torch.nn.functional as F
try:
from . import mvpraymarchlib
except:
import mvpraymarchlib
def build_accel(primtransfin, algo, fixedorder=False):
"""build bvh structure given primitive centers and sizes
Parameters:
----------
primtransfin : tuple[tensor, tensor, tensor]
primitive transform tensors
algo : int
raymarching algorithm
fixedorder : optional[str]
True means the bvh builder will not reorder primitives and will
use a trivial tree structure. Likely to be slow for arbitrary
configurations of primitives.
"""
primpos, primrot, primscale = primtransfin
N = primpos.size(0)
K = primpos.size(1)
dev = primpos.device
# compute and sort morton codes
if fixedorder:
sortedobjid = (torch.arange(N*K, dtype=torch.int32, device=dev) % K).view(N, K)
else:
cmax = primpos.max(dim=1, keepdim=True)[0]
cmin = primpos.min(dim=1, keepdim=True)[0]
centers_norm = (primpos - cmin) / (cmax - cmin).clamp(min=1e-8)
mortoncode = torch.empty((N, K), dtype=torch.int32, device=dev)
mvpraymarchlib.compute_morton(centers_norm, mortoncode, algo)
sortedcode, sortedobjid_long = torch.sort(mortoncode, dim=-1)
sortedobjid = sortedobjid_long.int()
if fixedorder:
nodechildren = torch.cat([
torch.arange(1, (K - 1) * 2 + 1, dtype=torch.int32, device=dev),
torch.div(torch.arange(-2, -(K * 2 + 1) - 1, -1, dtype=torch.int32, device=dev), 2, rounding_mode="floor")],
dim=0).view(1, K + K - 1, 2).repeat(N, 1, 1)
nodeparent = (
torch.div(torch.arange(-1, K * 2 - 2, dtype=torch.int32, device=dev), 2, rounding_mode="floor")
.view(1, -1).repeat(N, 1))
else:
nodechildren = torch.empty((N, K + K - 1, 2), dtype=torch.int32, device=dev)
nodeparent = torch.full((N, K + K - 1), -1, dtype=torch.int32, device=dev)
mvpraymarchlib.build_tree(sortedcode, nodechildren, nodeparent)
nodeaabb = torch.empty((N, K + K - 1, 2, 3), dtype=torch.float32, device=dev)
mvpraymarchlib.compute_aabb(*primtransfin, sortedobjid, nodechildren, nodeparent, nodeaabb, algo)
return sortedobjid, nodechildren, nodeaabb
class MVPRaymarch(Function):
"""Custom Function for raymarching Mixture of Volumetric Primitives."""
@staticmethod
def forward(self, raypos, raydir, stepsize, tminmax,
primpos, primrot, primscale,
template, warp,
rayterm, gradmode, options):
algo = options["algo"]
usebvh = options["usebvh"]
sortprims = options["sortprims"]
randomorder = options["randomorder"]
maxhitboxes = options["maxhitboxes"]
synchitboxes = options["synchitboxes"]
chlast = options["chlast"]
fadescale = options["fadescale"]
fadeexp = options["fadeexp"]
accum = options["accum"]
termthresh = options["termthresh"]
griddim = options["griddim"]
if isinstance(options["blocksize"], tuple):
blocksizex, blocksizey = options["blocksize"]
else:
blocksizex = options["blocksize"]
blocksizey = 1
assert raypos.is_contiguous() and raypos.size(3) == 3
assert raydir.is_contiguous() and raydir.size(3) == 3
assert tminmax.is_contiguous() and tminmax.size(3) == 2
assert primpos is None or primpos.is_contiguous() and primpos.size(2) == 3
assert primrot is None or primrot.is_contiguous() and primrot.size(2) == 3
assert primscale is None or primscale.is_contiguous() and primscale.size(2) == 3
if chlast:
assert template.is_contiguous() and len(template.size()) == 6 and template.size(-1) == 4
assert warp is None or (warp.is_contiguous() and warp.size(-1) == 3)
else:
assert template.is_contiguous() and len(template.size()) == 6 and template.size(2) == 4
assert warp is None or (warp.is_contiguous() and warp.size(2) == 3)
primtransfin = (primpos, primrot, primscale)
# Build bvh
if usebvh is not False:
# compute radius of primitives
sortedobjid, nodechildren, nodeaabb = build_accel(primtransfin,
algo, fixedorder=usebvh=="fixedorder")
assert sortedobjid.is_contiguous()
assert nodechildren.is_contiguous()
assert nodeaabb.is_contiguous()
if randomorder:
sortedobjid = sortedobjid[torch.randperm(len(sortedobjid))]
else:
_, sortedobjid, nodechildren, nodeaabb = None, None, None, None
# march through boxes
N, H, W = raypos.size(0), raypos.size(1), raypos.size(2)
rayrgba = torch.empty((N, H, W, 4), device=raypos.device)
if gradmode:
raysat = torch.full((N, H, W, 3), -1, dtype=torch.float32, device=raypos.device)
rayterm = None
else:
raysat = None
rayterm = None
mvpraymarchlib.raymarch_forward(
raypos, raydir, stepsize, tminmax,
sortedobjid, nodechildren, nodeaabb,
*primtransfin,
template, warp,
rayrgba, raysat, rayterm,
algo, sortprims, maxhitboxes, synchitboxes, chlast,
fadescale, fadeexp,
accum, termthresh,
griddim, blocksizex, blocksizey)
self.save_for_backward(
raypos, raydir, tminmax,
sortedobjid, nodechildren, nodeaabb,
primpos, primrot, primscale,
template, warp,
rayrgba, raysat, rayterm)
self.options = options
self.stepsize = stepsize
return rayrgba
@staticmethod
def backward(self, grad_rayrgba):
(raypos, raydir, tminmax,
sortedobjid, nodechildren, nodeaabb,
primpos, primrot, primscale,
template, warp,
rayrgba, raysat, rayterm) = self.saved_tensors
algo = self.options["algo"]
usebvh = self.options["usebvh"]
sortprims = self.options["sortprims"]
maxhitboxes = self.options["maxhitboxes"]
synchitboxes = self.options["synchitboxes"]
chlast = self.options["chlast"]
fadescale = self.options["fadescale"]
fadeexp = self.options["fadeexp"]
accum = self.options["accum"]
termthresh = self.options["termthresh"]
griddim = self.options["griddim"]
if isinstance(self.options["bwdblocksize"], tuple):
blocksizex, blocksizey = self.options["bwdblocksize"]
else:
blocksizex = self.options["bwdblocksize"]
blocksizey = 1
stepsize = self.stepsize
grad_primpos = torch.zeros_like(primpos)
grad_primrot = torch.zeros_like(primrot)
grad_primscale = torch.zeros_like(primscale)
primtransfin = (primpos, grad_primpos, primrot, grad_primrot, primscale, grad_primscale)
grad_template = torch.zeros_like(template)
grad_warp = torch.zeros_like(warp) if warp is not None else None
mvpraymarchlib.raymarch_backward(raypos, raydir, stepsize, tminmax,
sortedobjid, nodechildren, nodeaabb,
*primtransfin,
template, grad_template, warp, grad_warp,
rayrgba, grad_rayrgba.contiguous(), raysat, rayterm,
algo, sortprims, maxhitboxes, synchitboxes, chlast,
fadescale, fadeexp,
accum, termthresh,
griddim, blocksizex, blocksizey)
return (None, None, None, None,
grad_primpos, grad_primrot, grad_primscale,
grad_template, grad_warp,
None, None, None)
def mvpraymarch(raypos, raydir, stepsize, tminmax,
primtransf,
template, warp,
rayterm=None,
algo=0, usebvh="fixedorder",
sortprims=False, randomorder=False,
maxhitboxes=512, synchitboxes=True,
chlast=True, fadescale=8., fadeexp=8.,
accum=0, termthresh=0.,
griddim=3, blocksize=(8, 16), bwdblocksize=(8, 16)):
"""Main entry point for raymarching MVP.
Parameters:
----------
raypos: N x H x W x 3 tensor of ray origins
raydir: N x H x W x 3 tensor of ray directions
stepsize: raymarching step size
tminmax: N x H x W x 2 tensor of raymarching min/max bounds
template: N x K x 4 x TD x TH x TW tensor of K RGBA primitives
warp: N x K x 3 x TD x TH x TW tensor of K warp fields (optional)
primpos: N x K x 3 tensor of primitive centers
primrot: N x K x 3 x 3 tensor of primitive orientations
primscale: N x K x 3 tensor of primitive inverse dimension lengths
algo: algorithm for raymarching (valid values: 0, 1). algo=0 is the fastest.
Currently algo=0 has a limit of 512 primitives per ray, so problems can
occur if there are many more boxes. all sortprims=True options have
this limitation, but you can use (algo=1, sortprims=False,
usebvh="fixedorder") which works correctly and has no primitive number
limitation (but is slightly slower).
usebvh: True to use bvh, "fixedorder" for a simple BVH, False for no bvh
sortprims: True to sort overlapping primitives at a sample point. Must
be True for gradients to match the PyTorch gradients. Seems unstable
if False but also not a big performance bottleneck.
chlast: whether template is provided as channels last or not. True tends
to be faster.
fadescale: Opacity is faded at the borders of the primitives by the equation
exp(-fadescale * x ** fadeexp) where x is the normalized coordinates of
the primitive.
fadeexp: Opacity is faded at the borders of the primitives by the equation
exp(-fadescale * x ** fadeexp) where x is the normalized coordinates of
the primitive.
griddim: CUDA grid dimensionality.
blocksize: blocksize of CUDA kernels. Should be 2-element tuple if
griddim>1, or integer if griddim==1."""
if isinstance(primtransf, tuple):
primpos, primrot, primscale = primtransf
else:
primpos, primrot, primscale = (
primtransf[:, :, 0, :].contiguous(),
primtransf[:, :, 1:4, :].contiguous(),
primtransf[:, :, 4, :].contiguous())
primtransfin = (primpos, primrot, primscale)
out = MVPRaymarch.apply(raypos, raydir, stepsize, tminmax,
*primtransfin,
template, warp,
rayterm, torch.is_grad_enabled(),
{"algo": algo, "usebvh": usebvh, "sortprims": sortprims, "randomorder": randomorder,
"maxhitboxes": maxhitboxes, "synchitboxes": synchitboxes,
"chlast": chlast, "fadescale": fadescale, "fadeexp": fadeexp,
"accum": accum, "termthresh": termthresh,
"griddim": griddim, "blocksize": blocksize, "bwdblocksize": bwdblocksize})
return out
class Rodrigues(nn.Module):
def __init__(self):
super(Rodrigues, self).__init__()
def forward(self, rvec):
theta = torch.sqrt(1e-5 + torch.sum(rvec ** 2, dim=1))
rvec = rvec / theta[:, None]
costh = torch.cos(theta)
sinth = torch.sin(theta)
return torch.stack((
rvec[:, 0] ** 2 + (1. - rvec[:, 0] ** 2) * costh,
rvec[:, 0] * rvec[:, 1] * (1. - costh) - rvec[:, 2] * sinth,
rvec[:, 0] * rvec[:, 2] * (1. - costh) + rvec[:, 1] * sinth,
rvec[:, 0] * rvec[:, 1] * (1. - costh) + rvec[:, 2] * sinth,
rvec[:, 1] ** 2 + (1. - rvec[:, 1] ** 2) * costh,
rvec[:, 1] * rvec[:, 2] * (1. - costh) - rvec[:, 0] * sinth,
rvec[:, 0] * rvec[:, 2] * (1. - costh) - rvec[:, 1] * sinth,
rvec[:, 1] * rvec[:, 2] * (1. - costh) + rvec[:, 0] * sinth,
rvec[:, 2] ** 2 + (1. - rvec[:, 2] ** 2) * costh), dim=1).view(-1, 3, 3)
def gradcheck(usebvh=True, sortprims=True, maxhitboxes=512, synchitboxes=False,
dowarp=False, chlast=False, fadescale=8., fadeexp=8.,
accum=0, termthresh=0., algo=0, griddim=2, blocksize=(8, 16), bwdblocksize=(8, 16)):
N = 2
H = 65
W = 65
k3 = 4
K = k3*k3*k3
M = 32
print("=================================================================")
print("usebvh={}, sortprims={}, maxhb={}, synchb={}, dowarp={}, chlast={}, "
"fadescale={}, fadeexp={}, accum={}, termthresh={}, algo={}, griddim={}, "
"blocksize={}, bwdblocksize={}".format(
usebvh, sortprims, maxhitboxes, synchitboxes, dowarp, chlast,
fadescale, fadeexp, accum, termthresh, algo, griddim, blocksize,
bwdblocksize))
# generate random inputs
torch.manual_seed(1112)
coherent_rays = True
if not coherent_rays:
_raypos = torch.randn(N, H, W, 3).to("cuda")
_raydir = torch.randn(N, H, W, 3).to("cuda")
_raydir /= torch.sqrt(torch.sum(_raydir ** 2, dim=-1, keepdim=True))
else:
focal = torch.tensor([[W*4.0, W*4.0] for n in range(N)])
princpt = torch.tensor([[W*0.5, H*0.5] for n in range(N)])
pixely, pixelx = torch.meshgrid(torch.arange(H).float(), torch.arange(W).float())
pixelcoords = torch.stack([pixelx, pixely], dim=-1)[None, :, :, :].repeat(N, 1, 1, 1)
raydir = (pixelcoords - princpt[:, None, None, :]) / focal[:, None, None, :]
raydir = torch.cat([raydir, torch.ones_like(raydir[:, :, :, 0:1])], dim=-1)
raydir = raydir / torch.sqrt(torch.sum(raydir ** 2, dim=-1, keepdim=True))
_raypos = torch.tensor([-0.0, 0.0, -4.])[None, None, None, :].repeat(N, H, W, 1).to("cuda")
_raydir = raydir.to("cuda")
_raydir /= torch.sqrt(torch.sum(_raydir ** 2, dim=-1, keepdim=True))
max_len = 6.0
_stepsize = max_len / 15.386928
_tminmax = max_len*torch.arange(2, dtype=torch.float32)[None, None, None, :].repeat(N, H, W, 1).to("cuda") + \
torch.rand(N, H, W, 2, device="cuda") * 1.
_template = torch.randn(N, K, 4, M, M, M, requires_grad=True)
_template.data[:, :, -1, :, :, :] -= 3.5
_template = _template.contiguous().detach().clone()
_template.requires_grad = True
gridxyz = torch.stack(torch.meshgrid(
torch.linspace(-1., 1., M//2),
torch.linspace(-1., 1., M//2),
torch.linspace(-1., 1., M//2))[::-1], dim=0).contiguous()
_warp = (torch.randn(N, K, 3, M//2, M//2, M//2) * 0.01 + gridxyz[None, None, :, :, :, :]).contiguous().detach().clone()
_warp.requires_grad = True
_primpos = torch.randn(N, K, 3, requires_grad=True)
_primpos = torch.randn(N, K, 3, requires_grad=True)
coherent_centers = True
if coherent_centers:
ns = k3
#assert ns*ns*ns==K
grid3d = torch.stack(torch.meshgrid(
torch.linspace(-1., 1., ns),
torch.linspace(-1., 1., ns),
torch.linspace(-1., 1., K//(ns*ns)))[::-1], dim=0)[None]
_primpos = ((
grid3d.permute((0, 2, 3, 4, 1)).reshape(1, K, 3).expand(N, -1, -1) +
0.1 * torch.randn(N, K, 3, requires_grad=True)
)).contiguous().detach().clone()
_primpos.requires_grad = True
scale_ws = 1.
_primrot = torch.randn(N, K, 3)
rodrigues = Rodrigues()
_primrot = rodrigues(_primrot.view(-1, 3)).view(N, K, 3, 3).contiguous().detach().clone()
_primrot.requires_grad = True
_primscale = torch.randn(N, K, 3, requires_grad=True)
_primscale.data *= 0.0
if dowarp:
params = [_template, _warp, _primscale, _primrot, _primpos]
paramnames = ["template", "warp", "primscale", "primrot", "primpos"]
else:
params = [_template, _primscale, _primrot, _primpos]
paramnames = ["template", "primscale", "primrot", "primpos"]
termthreshorig = termthresh
########################### run pytorch version ###########################
raypos = _raypos
raydir = _raydir
stepsize = _stepsize
tminmax = _tminmax
#template = F.softplus(_template.to("cuda") * 1.5)
template = F.softplus(_template.to("cuda") * 1.5) if algo != 2 else _template.to("cuda") * 1.5
warp = _warp.to("cuda")
primpos = _primpos.to("cuda") * 0.3
primrot = _primrot.to("cuda")
primscale = scale_ws * torch.exp(0.1 * _primscale.to("cuda"))
# python raymarching implementation
rayrgba = torch.zeros((N, H, W, 4)).to("cuda")
raypos = raypos + raydir * tminmax[:, :, :, 0, None]
t = tminmax[:, :, :, 0]
step = 0
t0 = t.detach().clone()
raypos0 = raypos.detach().clone()
torch.cuda.synchronize()
time0 = time.time()
while (t < tminmax[:, :, :, 1]).any():
valid2 = torch.ones_like(rayrgba[:, :, :, 3:4])
for k in range(K):
y0 = torch.bmm(
(raypos - primpos[:, k, None, None, :]).view(raypos.size(0), -1, raypos.size(3)),
primrot[:, k, :, :]).view_as(raypos) * primscale[:, k, None, None, :]
fade = torch.exp(-fadescale * torch.sum(torch.abs(y0) ** fadeexp, dim=-1, keepdim=True))
if dowarp:
y1 = F.grid_sample(
warp[:, k, :, :, :, :],
y0[:, None, :, :, :], align_corners=True)[:, :, 0, :, :].permute(0, 2, 3, 1)
else:
y1 = y0
sample = F.grid_sample(
template[:, k, :, :, :, :],
y1[:, None, :, :, :], align_corners=True)[:, :, 0, :, :].permute(0, 2, 3, 1)
valid1 = (
torch.prod(y0[:, :, :, :] >= -1., dim=-1, keepdim=True) *
torch.prod(y0[:, :, :, :] <= 1., dim=-1, keepdim=True))
valid = ((t >= tminmax[:, :, :, 0]) & (t < tminmax[:, :, :, 1])).float()[:, :, :, None]
alpha0 = sample[:, :, :, 3:4]
rgb = sample[:, :, :, 0:3] * valid * valid1
alpha = alpha0 * fade * stepsize * valid * valid1
if accum == 0:
newalpha = rayrgba[:, :, :, 3:4] + alpha
contrib = (newalpha.clamp(max=1.0) - rayrgba[:, :, :, 3:4]) * valid * valid1
rayrgba = rayrgba + contrib * torch.cat([rgb, torch.ones_like(alpha)], dim=-1)
else:
raise
step += 1
t = t0 + stepsize * step
raypos = raypos0 + raydir * stepsize * step
print(rayrgba[..., -1].min().item(), rayrgba[..., -1].max().item())
sample0 = rayrgba
torch.cuda.synchronize()
time1 = time.time()
sample0.backward(torch.ones_like(sample0))
torch.cuda.synchronize()
time2 = time.time()
print("{:<10} {:>10} {:>10} {:>10}".format("", "fwd", "bwd", "total"))
print("{:<10} {:10.5} {:10.5} {:10.5}".format("pytime", time1 - time0, time2 - time1, time2 - time0))
grads0 = [p.grad.detach().clone() for p in params]
for p in params:
p.grad.detach_()
p.grad.zero_()
############################## run cuda version ###########################
raypos = _raypos
raydir = _raydir
stepsize = _stepsize
tminmax = _tminmax
template = F.softplus(_template.to("cuda") * 1.5) if algo != 2 else _template.to("cuda") * 1.5
warp = _warp.to("cuda")
if chlast:
template = template.permute(0, 1, 3, 4, 5, 2).contiguous()
warp = warp.permute(0, 1, 3, 4, 5, 2).contiguous()
primpos = _primpos.to("cuda") * 0.3
primrot = _primrot.to("cuda")
primscale = scale_ws * torch.exp(0.1 * _primscale.to("cuda"))
niter = 1
tf, tb = 0., 0.
for i in range(niter):
for p in params:
try:
p.grad.detach_()
p.grad.zero_()
except:
pass
t0 = time.time()
torch.cuda.synchronize()
sample1 = mvpraymarch(raypos, raydir, stepsize, tminmax,
(primpos, primrot, primscale),
template, warp if dowarp else None,
algo=algo, usebvh=usebvh, sortprims=sortprims,
maxhitboxes=maxhitboxes, synchitboxes=synchitboxes,
chlast=chlast, fadescale=fadescale, fadeexp=fadeexp,
accum=accum, termthresh=termthreshorig,
griddim=griddim, blocksize=blocksize, bwdblocksize=bwdblocksize)
t1 = time.time()
torch.cuda.synchronize()
sample1.backward(torch.ones_like(sample1), retain_graph=True)
torch.cuda.synchronize()
t2 = time.time()
tf += t1 - t0
tb += t2 - t1
print("{:<10} {:10.5} {:10.5} {:10.5}".format("time", tf / niter, tb / niter, (tf + tb) / niter))
grads1 = [p.grad.detach().clone() for p in params]
############# compare results #############
print("-----------------------------------------------------------------")
print("{:>10} {:>10} {:>10} {:>10} {:>10} {:>10} {:>10} {:>10}".format("", "maxabsdiff", "dp", "||py||", "||cuda||", "index", "py", "cuda"))
ind = torch.argmax(torch.abs(sample0 - sample1))
print("{:<10} {:>10.5} {:>10.5} {:>10.5} {:>10.5} {:>10} {:>10.5} {:>10.5}".format(
"fwd",
torch.max(torch.abs(sample0 - sample1)).item(),
(torch.sum(sample0 * sample1) / torch.sqrt(torch.sum(sample0 * sample0) * torch.sum(sample1 * sample1))).item(),
torch.sqrt(torch.sum(sample0 * sample0)).item(),
torch.sqrt(torch.sum(sample1 * sample1)).item(),
ind.item(),
sample0.view(-1)[ind].item(),
sample1.view(-1)[ind].item()))
for p, g0, g1 in zip(paramnames, grads0, grads1):
ind = torch.argmax(torch.abs(g0 - g1))
print("{:<10} {:>10.5} {:>10.5} {:>10.5} {:>10.5} {:>10} {:>10.5} {:>10.5}".format(
p,
torch.max(torch.abs(g0 - g1)).item(),
(torch.sum(g0 * g1) / torch.sqrt(torch.sum(g0 * g0) * torch.sum(g1 * g1))).item(),
torch.sqrt(torch.sum(g0 * g0)).item(),
torch.sqrt(torch.sum(g1 * g1)).item(),
ind.item(),
g0.view(-1)[ind].item(),
g1.view(-1)[ind].item()))
if __name__ == "__main__":
gradcheck(usebvh="fixedorder", sortprims=False, maxhitboxes=512, synchitboxes=True,
dowarp=False, chlast=True, fadescale=6.5, fadeexp=7.5, accum=0, algo=0, griddim=3)
gradcheck(usebvh="fixedorder", sortprims=False, maxhitboxes=512, synchitboxes=True,
dowarp=True, chlast=True, fadescale=6.5, fadeexp=7.5, accum=0, algo=1, griddim=3)
|