File size: 22,967 Bytes
81ecb2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# 
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import numpy as np
import time

import torch
import torch.nn as nn
from torch.autograd import Function
import torch.nn.functional as F

try:
    from . import mvpraymarchlib
except:
    import mvpraymarchlib

def build_accel(primtransfin, algo, fixedorder=False):
    """build bvh structure given primitive centers and sizes
    
    Parameters:
    ----------
    primtransfin : tuple[tensor, tensor, tensor]
        primitive transform tensors
    algo : int
        raymarching algorithm
    fixedorder : optional[str]
        True means the bvh builder will not reorder primitives and will
        use a trivial tree structure. Likely to be slow for arbitrary
        configurations of primitives.
    
    """
    primpos, primrot, primscale = primtransfin

    N = primpos.size(0)
    K = primpos.size(1)

    dev = primpos.device

    # compute and sort morton codes
    if fixedorder:
        sortedobjid = (torch.arange(N*K, dtype=torch.int32, device=dev) % K).view(N, K)
    else:
        cmax = primpos.max(dim=1, keepdim=True)[0]
        cmin = primpos.min(dim=1, keepdim=True)[0]

        centers_norm = (primpos - cmin) / (cmax - cmin).clamp(min=1e-8)

        mortoncode = torch.empty((N, K), dtype=torch.int32, device=dev)
        mvpraymarchlib.compute_morton(centers_norm, mortoncode, algo)
        sortedcode, sortedobjid_long = torch.sort(mortoncode, dim=-1)
        sortedobjid = sortedobjid_long.int()

    if fixedorder:
        nodechildren = torch.cat([
            torch.arange(1, (K - 1) * 2 + 1, dtype=torch.int32, device=dev),
            torch.div(torch.arange(-2, -(K * 2 + 1) - 1, -1, dtype=torch.int32, device=dev), 2, rounding_mode="floor")],
        dim=0).view(1, K + K - 1, 2).repeat(N, 1, 1)
        nodeparent = (
            torch.div(torch.arange(-1, K * 2 - 2, dtype=torch.int32, device=dev), 2, rounding_mode="floor")
               .view(1, -1).repeat(N, 1))
    else:
        nodechildren = torch.empty((N, K + K - 1, 2), dtype=torch.int32, device=dev)
        nodeparent = torch.full((N, K + K - 1), -1, dtype=torch.int32, device=dev)
        mvpraymarchlib.build_tree(sortedcode, nodechildren, nodeparent)

    nodeaabb = torch.empty((N, K + K - 1, 2, 3), dtype=torch.float32, device=dev)
    mvpraymarchlib.compute_aabb(*primtransfin, sortedobjid, nodechildren, nodeparent, nodeaabb, algo)

    return sortedobjid, nodechildren, nodeaabb

class MVPRaymarch(Function):
    """Custom Function for raymarching Mixture of Volumetric Primitives."""
    @staticmethod
    def forward(self, raypos, raydir, stepsize, tminmax,
            primpos, primrot, primscale,
            template, warp,
            rayterm, gradmode, options):
        algo = options["algo"]
        usebvh = options["usebvh"]
        sortprims = options["sortprims"]
        randomorder = options["randomorder"]
        maxhitboxes = options["maxhitboxes"]
        synchitboxes = options["synchitboxes"]
        chlast = options["chlast"]
        fadescale = options["fadescale"]
        fadeexp = options["fadeexp"]
        accum = options["accum"]
        termthresh = options["termthresh"]
        griddim = options["griddim"]
        if isinstance(options["blocksize"], tuple):
            blocksizex, blocksizey = options["blocksize"]
        else:
            blocksizex = options["blocksize"]
            blocksizey = 1

        assert raypos.is_contiguous() and raypos.size(3) == 3
        assert raydir.is_contiguous() and raydir.size(3) == 3
        assert tminmax.is_contiguous() and tminmax.size(3) == 2

        assert primpos is None or primpos.is_contiguous() and primpos.size(2) == 3
        assert primrot is None or primrot.is_contiguous() and primrot.size(2) == 3
        assert primscale is None or primscale.is_contiguous() and primscale.size(2) == 3

        if chlast:
            assert template.is_contiguous() and len(template.size()) == 6 and template.size(-1) == 4
            assert warp is None or (warp.is_contiguous() and warp.size(-1) == 3)
        else:
            assert template.is_contiguous() and len(template.size()) == 6 and template.size(2) == 4
            assert warp is None or (warp.is_contiguous() and warp.size(2) == 3)

        primtransfin = (primpos, primrot, primscale)

        # Build bvh
        if usebvh is not False:
            # compute radius of primitives
            sortedobjid, nodechildren, nodeaabb = build_accel(primtransfin,
                    algo, fixedorder=usebvh=="fixedorder")
            assert sortedobjid.is_contiguous()
            assert nodechildren.is_contiguous()
            assert nodeaabb.is_contiguous()

            if randomorder:
                sortedobjid = sortedobjid[torch.randperm(len(sortedobjid))]
        else:
            _, sortedobjid, nodechildren, nodeaabb = None, None, None, None

        # march through boxes
        N, H, W = raypos.size(0), raypos.size(1), raypos.size(2)
        rayrgba = torch.empty((N, H, W, 4), device=raypos.device)
        if gradmode:
            raysat = torch.full((N, H, W, 3), -1, dtype=torch.float32, device=raypos.device)
            rayterm = None
        else:
            raysat = None
            rayterm = None

        mvpraymarchlib.raymarch_forward(
                raypos, raydir, stepsize, tminmax,
                sortedobjid, nodechildren, nodeaabb,
                *primtransfin,
                template, warp,
                rayrgba, raysat, rayterm,
                algo, sortprims, maxhitboxes, synchitboxes, chlast,
                fadescale, fadeexp,
                accum, termthresh,
                griddim, blocksizex, blocksizey)

        self.save_for_backward(
                raypos, raydir, tminmax,
                sortedobjid, nodechildren, nodeaabb,
                primpos, primrot, primscale,
                template, warp,
                rayrgba, raysat, rayterm)
        self.options = options
        self.stepsize = stepsize

        return rayrgba

    @staticmethod
    def backward(self, grad_rayrgba):
        (raypos, raydir, tminmax,
            sortedobjid, nodechildren, nodeaabb,
            primpos, primrot, primscale,
            template, warp,
            rayrgba, raysat, rayterm) = self.saved_tensors
        algo = self.options["algo"]
        usebvh = self.options["usebvh"]
        sortprims = self.options["sortprims"]
        maxhitboxes = self.options["maxhitboxes"]
        synchitboxes = self.options["synchitboxes"]
        chlast = self.options["chlast"]
        fadescale = self.options["fadescale"]
        fadeexp = self.options["fadeexp"]
        accum = self.options["accum"]
        termthresh = self.options["termthresh"]
        griddim = self.options["griddim"]
        if isinstance(self.options["bwdblocksize"], tuple):
            blocksizex, blocksizey = self.options["bwdblocksize"]
        else:
            blocksizex = self.options["bwdblocksize"]
            blocksizey = 1

        stepsize = self.stepsize

        grad_primpos = torch.zeros_like(primpos)
        grad_primrot = torch.zeros_like(primrot)
        grad_primscale = torch.zeros_like(primscale)
        primtransfin = (primpos, grad_primpos, primrot, grad_primrot, primscale, grad_primscale)

        grad_template = torch.zeros_like(template)
        grad_warp = torch.zeros_like(warp) if warp is not None else None

        mvpraymarchlib.raymarch_backward(raypos, raydir, stepsize, tminmax,
                sortedobjid, nodechildren, nodeaabb,

                *primtransfin,

                template, grad_template, warp, grad_warp,

                rayrgba, grad_rayrgba.contiguous(), raysat, rayterm,

                algo, sortprims, maxhitboxes, synchitboxes, chlast,
                fadescale, fadeexp,
                accum, termthresh,
                griddim, blocksizex, blocksizey)

        return (None, None, None, None,
                grad_primpos, grad_primrot, grad_primscale,
                grad_template, grad_warp,
                None, None, None)

def mvpraymarch(raypos, raydir, stepsize, tminmax,
            primtransf,
            template, warp,
            rayterm=None,
            algo=0, usebvh="fixedorder",
            sortprims=False, randomorder=False,
            maxhitboxes=512, synchitboxes=True,
            chlast=True, fadescale=8., fadeexp=8.,
            accum=0, termthresh=0.,
            griddim=3, blocksize=(8, 16), bwdblocksize=(8, 16)):
    """Main entry point for raymarching MVP.

    Parameters:
    ----------
    raypos: N x H x W x 3 tensor of ray origins
    raydir: N x H x W x 3 tensor of ray directions
    stepsize: raymarching step size
    tminmax: N x H x W x 2 tensor of raymarching min/max bounds
    template: N x K x 4 x TD x TH x TW tensor of K RGBA primitives
    warp: N x K x 3 x TD x TH x TW tensor of K warp fields (optional)
    primpos: N x K x 3 tensor of primitive centers
    primrot: N x K x 3 x 3 tensor of primitive orientations
    primscale: N x K x 3 tensor of primitive inverse dimension lengths
    algo: algorithm for raymarching (valid values: 0, 1). algo=0 is the fastest.
        Currently algo=0 has a limit of 512 primitives per ray, so problems can
        occur if there are many more boxes. all sortprims=True options have
        this limitation, but you can use (algo=1, sortprims=False,
        usebvh="fixedorder") which works correctly and has no primitive number
        limitation (but is slightly slower).
    usebvh: True to use bvh, "fixedorder" for a simple BVH, False for no bvh
    sortprims: True to sort overlapping primitives at a sample point. Must
        be True for gradients to match the PyTorch gradients. Seems unstable
        if False but also not a big performance bottleneck.
    chlast: whether template is provided as channels last or not. True tends
        to be faster.
    fadescale: Opacity is faded at the borders of the primitives by the equation
        exp(-fadescale * x ** fadeexp) where x is the normalized coordinates of
        the primitive.
    fadeexp: Opacity is faded at the borders of the primitives by the equation
        exp(-fadescale * x ** fadeexp) where x is the normalized coordinates of
        the primitive.
    griddim: CUDA grid dimensionality.
    blocksize: blocksize of CUDA kernels. Should be 2-element tuple if
        griddim>1, or integer if griddim==1."""
    if isinstance(primtransf, tuple):
        primpos, primrot, primscale = primtransf
    else:
        primpos, primrot, primscale = (
                primtransf[:, :, 0, :].contiguous(),
                primtransf[:, :, 1:4, :].contiguous(),
                primtransf[:, :, 4, :].contiguous())
    primtransfin = (primpos, primrot, primscale)

    out = MVPRaymarch.apply(raypos, raydir, stepsize, tminmax,
            *primtransfin,
            template, warp,
            rayterm, torch.is_grad_enabled(),
            {"algo": algo, "usebvh": usebvh, "sortprims": sortprims, "randomorder": randomorder,
                "maxhitboxes": maxhitboxes, "synchitboxes": synchitboxes,
                "chlast": chlast, "fadescale": fadescale, "fadeexp": fadeexp,
                "accum": accum, "termthresh": termthresh,
                "griddim": griddim, "blocksize": blocksize, "bwdblocksize": bwdblocksize})
    return out

class Rodrigues(nn.Module):
    def __init__(self):
        super(Rodrigues, self).__init__()

    def forward(self, rvec):
        theta = torch.sqrt(1e-5 + torch.sum(rvec ** 2, dim=1))
        rvec = rvec / theta[:, None]
        costh = torch.cos(theta)
        sinth = torch.sin(theta)
        return torch.stack((
            rvec[:, 0] ** 2 + (1. - rvec[:, 0] ** 2) * costh,
            rvec[:, 0] * rvec[:, 1] * (1. - costh) - rvec[:, 2] * sinth,
            rvec[:, 0] * rvec[:, 2] * (1. - costh) + rvec[:, 1] * sinth,

            rvec[:, 0] * rvec[:, 1] * (1. - costh) + rvec[:, 2] * sinth,
            rvec[:, 1] ** 2 + (1. - rvec[:, 1] ** 2) * costh,
            rvec[:, 1] * rvec[:, 2] * (1. - costh) - rvec[:, 0] * sinth,

            rvec[:, 0] * rvec[:, 2] * (1. - costh) - rvec[:, 1] * sinth,
            rvec[:, 1] * rvec[:, 2] * (1. - costh) + rvec[:, 0] * sinth,
            rvec[:, 2] ** 2 + (1. - rvec[:, 2] ** 2) * costh), dim=1).view(-1, 3, 3)

def gradcheck(usebvh=True, sortprims=True, maxhitboxes=512, synchitboxes=False,
        dowarp=False, chlast=False, fadescale=8., fadeexp=8.,
        accum=0, termthresh=0., algo=0, griddim=2, blocksize=(8, 16), bwdblocksize=(8, 16)):
    N = 2
    H = 65
    W = 65
    k3 = 4
    K = k3*k3*k3

    M = 32

    print("=================================================================")
    print("usebvh={}, sortprims={}, maxhb={}, synchb={}, dowarp={}, chlast={}, "
        "fadescale={}, fadeexp={}, accum={}, termthresh={}, algo={}, griddim={}, "
        "blocksize={}, bwdblocksize={}".format(
        usebvh, sortprims, maxhitboxes, synchitboxes, dowarp, chlast,
        fadescale, fadeexp, accum, termthresh, algo, griddim, blocksize,
        bwdblocksize))

    # generate random inputs
    torch.manual_seed(1112)

    coherent_rays = True
    if not coherent_rays:
        _raypos = torch.randn(N, H, W, 3).to("cuda")
        _raydir = torch.randn(N, H, W, 3).to("cuda")
        _raydir /= torch.sqrt(torch.sum(_raydir ** 2, dim=-1, keepdim=True))
    else:
        focal = torch.tensor([[W*4.0, W*4.0] for n in range(N)])
        princpt = torch.tensor([[W*0.5, H*0.5] for n in range(N)])
        pixely, pixelx = torch.meshgrid(torch.arange(H).float(), torch.arange(W).float())
        pixelcoords = torch.stack([pixelx, pixely], dim=-1)[None, :, :, :].repeat(N, 1, 1, 1)

        raydir = (pixelcoords - princpt[:, None, None, :]) / focal[:, None, None, :]
        raydir = torch.cat([raydir, torch.ones_like(raydir[:, :, :, 0:1])], dim=-1)
        raydir = raydir / torch.sqrt(torch.sum(raydir ** 2, dim=-1, keepdim=True))

        _raypos = torch.tensor([-0.0, 0.0, -4.])[None, None, None, :].repeat(N, H, W, 1).to("cuda")
        _raydir = raydir.to("cuda")
        _raydir /= torch.sqrt(torch.sum(_raydir ** 2, dim=-1, keepdim=True))

    max_len = 6.0
    _stepsize = max_len / 15.386928
    _tminmax = max_len*torch.arange(2, dtype=torch.float32)[None, None, None, :].repeat(N, H, W, 1).to("cuda") + \
            torch.rand(N, H, W, 2, device="cuda") * 1.

    _template = torch.randn(N, K, 4, M, M, M, requires_grad=True)
    _template.data[:, :, -1, :, :, :] -= 3.5
    _template = _template.contiguous().detach().clone()
    _template.requires_grad = True
    gridxyz = torch.stack(torch.meshgrid(
        torch.linspace(-1., 1., M//2),
        torch.linspace(-1., 1., M//2),
        torch.linspace(-1., 1., M//2))[::-1], dim=0).contiguous()
    _warp = (torch.randn(N, K, 3, M//2, M//2, M//2) * 0.01 + gridxyz[None, None, :, :, :, :]).contiguous().detach().clone()
    _warp.requires_grad = True
    _primpos = torch.randn(N, K, 3, requires_grad=True)
    _primpos = torch.randn(N, K, 3, requires_grad=True)

    coherent_centers = True
    if coherent_centers:
        ns = k3
        #assert ns*ns*ns==K
        grid3d = torch.stack(torch.meshgrid(
            torch.linspace(-1., 1., ns),
            torch.linspace(-1., 1., ns),
            torch.linspace(-1., 1., K//(ns*ns)))[::-1], dim=0)[None]
        _primpos = ((
            grid3d.permute((0, 2, 3, 4, 1)).reshape(1, K, 3).expand(N, -1, -1) +
            0.1 * torch.randn(N, K, 3, requires_grad=True)
            )).contiguous().detach().clone()
        _primpos.requires_grad = True
    scale_ws = 1.
    _primrot = torch.randn(N, K, 3)
    rodrigues = Rodrigues()
    _primrot = rodrigues(_primrot.view(-1, 3)).view(N, K, 3, 3).contiguous().detach().clone()
    _primrot.requires_grad = True

    _primscale = torch.randn(N, K, 3, requires_grad=True)
    _primscale.data *= 0.0

    if dowarp:
        params = [_template, _warp, _primscale, _primrot, _primpos]
        paramnames = ["template", "warp", "primscale", "primrot", "primpos"]
    else:
        params = [_template, _primscale, _primrot, _primpos]
        paramnames = ["template", "primscale", "primrot", "primpos"]

    termthreshorig = termthresh

    ########################### run pytorch version ###########################

    raypos = _raypos
    raydir = _raydir
    stepsize = _stepsize
    tminmax = _tminmax

    #template = F.softplus(_template.to("cuda") * 1.5)
    template = F.softplus(_template.to("cuda") * 1.5) if algo != 2 else _template.to("cuda") * 1.5
    warp = _warp.to("cuda")
    primpos = _primpos.to("cuda") * 0.3
    primrot = _primrot.to("cuda")
    primscale = scale_ws * torch.exp(0.1 * _primscale.to("cuda"))

    # python raymarching implementation
    rayrgba = torch.zeros((N, H, W, 4)).to("cuda")
    raypos = raypos + raydir * tminmax[:, :, :, 0, None]
    t = tminmax[:, :, :, 0]

    step = 0
    t0 = t.detach().clone()
    raypos0 = raypos.detach().clone()

    torch.cuda.synchronize()
    time0 = time.time()

    while (t < tminmax[:, :, :, 1]).any():
        valid2 = torch.ones_like(rayrgba[:, :, :, 3:4])

        for k in range(K):
            y0 = torch.bmm(
                    (raypos - primpos[:, k, None, None, :]).view(raypos.size(0), -1, raypos.size(3)),
                    primrot[:, k, :, :]).view_as(raypos) * primscale[:, k, None, None, :]

            fade = torch.exp(-fadescale * torch.sum(torch.abs(y0) ** fadeexp, dim=-1, keepdim=True))

            if dowarp:
                y1 = F.grid_sample(
                        warp[:, k, :, :, :, :],
                        y0[:, None, :, :, :], align_corners=True)[:, :, 0, :, :].permute(0, 2, 3, 1)
            else:
                y1 = y0

            sample = F.grid_sample(
                    template[:, k, :, :, :, :],
                    y1[:, None, :, :, :], align_corners=True)[:, :, 0, :, :].permute(0, 2, 3, 1)

            valid1 = (
                torch.prod(y0[:, :, :, :] >= -1., dim=-1, keepdim=True) *
                torch.prod(y0[:, :, :, :] <= 1., dim=-1, keepdim=True))

            valid = ((t >= tminmax[:, :, :, 0]) & (t < tminmax[:, :, :, 1])).float()[:, :, :, None]

            alpha0 = sample[:, :, :, 3:4]

            rgb = sample[:, :, :, 0:3] * valid * valid1
            alpha = alpha0 * fade * stepsize * valid * valid1

            if accum == 0:
                newalpha = rayrgba[:, :, :, 3:4] + alpha
                contrib = (newalpha.clamp(max=1.0) - rayrgba[:, :, :, 3:4]) * valid * valid1
                rayrgba = rayrgba + contrib * torch.cat([rgb, torch.ones_like(alpha)], dim=-1)
            else:
                raise

        step += 1
        t = t0 + stepsize * step
        raypos = raypos0 + raydir * stepsize * step

    print(rayrgba[..., -1].min().item(), rayrgba[..., -1].max().item())

    sample0 = rayrgba

    torch.cuda.synchronize()
    time1 = time.time()

    sample0.backward(torch.ones_like(sample0))

    torch.cuda.synchronize()
    time2 = time.time()

    print("{:<10} {:>10} {:>10} {:>10}".format("", "fwd", "bwd", "total"))
    print("{:<10} {:10.5} {:10.5} {:10.5}".format("pytime", time1 - time0, time2 - time1, time2 - time0))

    grads0 = [p.grad.detach().clone() for p in params]

    for p in params:
        p.grad.detach_()
        p.grad.zero_()

    ############################## run cuda version ###########################

    raypos = _raypos
    raydir = _raydir
    stepsize = _stepsize
    tminmax = _tminmax

    template = F.softplus(_template.to("cuda") * 1.5) if algo != 2 else _template.to("cuda") * 1.5
    warp = _warp.to("cuda")
    if chlast:
        template = template.permute(0, 1, 3, 4, 5, 2).contiguous()
        warp = warp.permute(0, 1, 3, 4, 5, 2).contiguous()
    primpos = _primpos.to("cuda") * 0.3
    primrot = _primrot.to("cuda")
    primscale = scale_ws * torch.exp(0.1 * _primscale.to("cuda"))

    niter = 1

    tf, tb = 0., 0.
    for i in range(niter):
        for p in params:
            try:
                p.grad.detach_()
                p.grad.zero_()
            except:
                pass
        t0 = time.time()
        torch.cuda.synchronize()
        sample1 = mvpraymarch(raypos, raydir, stepsize, tminmax,
                (primpos, primrot, primscale),
                template, warp if dowarp else None,
                algo=algo, usebvh=usebvh, sortprims=sortprims, 
                maxhitboxes=maxhitboxes, synchitboxes=synchitboxes,
                chlast=chlast, fadescale=fadescale, fadeexp=fadeexp,
                accum=accum, termthresh=termthreshorig,
                griddim=griddim, blocksize=blocksize, bwdblocksize=bwdblocksize)
        t1 = time.time()
        torch.cuda.synchronize()
        sample1.backward(torch.ones_like(sample1), retain_graph=True)
        torch.cuda.synchronize()
        t2 = time.time()
        tf += t1 - t0
        tb += t2 - t1

    print("{:<10} {:10.5} {:10.5} {:10.5}".format("time", tf / niter, tb / niter, (tf + tb) / niter))
    grads1 = [p.grad.detach().clone() for p in params]

    ############# compare results #############

    print("-----------------------------------------------------------------")
    print("{:>10} {:>10} {:>10} {:>10} {:>10} {:>10} {:>10} {:>10}".format("", "maxabsdiff", "dp", "||py||", "||cuda||", "index", "py", "cuda"))
    ind = torch.argmax(torch.abs(sample0 - sample1))
    print("{:<10} {:>10.5} {:>10.5} {:>10.5} {:>10.5} {:>10} {:>10.5} {:>10.5}".format(
        "fwd",
        torch.max(torch.abs(sample0 - sample1)).item(),
        (torch.sum(sample0 * sample1) / torch.sqrt(torch.sum(sample0 * sample0) * torch.sum(sample1 * sample1))).item(),
        torch.sqrt(torch.sum(sample0 * sample0)).item(),
        torch.sqrt(torch.sum(sample1 * sample1)).item(),
        ind.item(),
        sample0.view(-1)[ind].item(),
        sample1.view(-1)[ind].item()))

    for p, g0, g1 in zip(paramnames, grads0, grads1):
        ind = torch.argmax(torch.abs(g0 - g1))
        print("{:<10} {:>10.5} {:>10.5} {:>10.5} {:>10.5} {:>10} {:>10.5} {:>10.5}".format(
                p,
                torch.max(torch.abs(g0 - g1)).item(),
                (torch.sum(g0 * g1) / torch.sqrt(torch.sum(g0 * g0) * torch.sum(g1 * g1))).item(),
                torch.sqrt(torch.sum(g0 * g0)).item(),
                torch.sqrt(torch.sum(g1 * g1)).item(),
                ind.item(),
                g0.view(-1)[ind].item(),
                g1.view(-1)[ind].item()))

if __name__ == "__main__":
    gradcheck(usebvh="fixedorder", sortprims=False, maxhitboxes=512, synchitboxes=True,
            dowarp=False, chlast=True, fadescale=6.5, fadeexp=7.5, accum=0, algo=0, griddim=3)
    gradcheck(usebvh="fixedorder", sortprims=False, maxhitboxes=512, synchitboxes=True,
            dowarp=True, chlast=True, fadescale=6.5, fadeexp=7.5, accum=0, algo=1, griddim=3)