Spaces:
Runtime error
Runtime error
File size: 9,169 Bytes
81ecb2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
// Copyright (c) Meta Platforms, Inc. and affiliates.
// All rights reserved.
//
// This source code is licensed under the license found in the
// LICENSE file in the root directory of this source tree.
#include <cmath>
#include <cstdio>
#include <functional>
#include <map>
#include "helper_math.h"
#include "cudadispatch.h"
#include "primtransf.h"
// Expands a 10-bit integer into 30 bits
// by inserting 2 zeros after each bit.
__device__ unsigned int expand_bits(unsigned int v) {
v = (v * 0x00010001u) & 0xFF0000FFu;
v = (v * 0x00000101u) & 0x0F00F00Fu;
v = (v * 0x00000011u) & 0xC30C30C3u;
v = (v * 0x00000005u) & 0x49249249u;
return v;
}
// Calculates a 30-bit Morton code for the
// given 3D point located within the unit cube [0,1].
__device__ unsigned int morton3D(float x, float y, float z) {
x = fminf(fmaxf(x * 1024.0f, 0.0f), 1023.0f);
y = fminf(fmaxf(y * 1024.0f, 0.0f), 1023.0f);
z = fminf(fmaxf(z * 1024.0f, 0.0f), 1023.0f);
unsigned int xx = expand_bits((unsigned int)x);
unsigned int yy = expand_bits((unsigned int)y);
unsigned int zz = expand_bits((unsigned int)z);
return xx * 4 + yy * 2 + zz;
}
template<typename PrimTransfT>
__global__ void compute_morton_kernel(
int N, int K,
typename PrimTransfT::Data data,
int * code
) {
const int count = N * K;
for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < count; index += blockDim.x * gridDim.x) {
const int k = index % K;
const int n = index / K;
//float4 c = center[n * K + k];
float3 c = data.get_center(n, k);
code[n * K + k] = morton3D(c.x, c.y, c.z);
}
}
__forceinline__ __device__ int delta(int* sortedcodes, int x, int y, int K) {
if (x >= 0 && x <= K - 1 && y >= 0 && y <= K - 1) {
return sortedcodes[x] == sortedcodes[y] ?
32 + __clz(x ^ y) :
__clz(sortedcodes[x] ^ sortedcodes[y]);
}
return -1;
}
__forceinline__ __device__ int sign(int x) {
return (int)(x > 0) - (int)(x < 0);
}
__device__ int find_split(
int* sortedcodes,
int first,
int last,
int K) {
float commonPrefix = delta(sortedcodes, first, last, K);
int split = first;
int step = last - first;
do {
step = (step + 1) >> 1; // exponential decrease
int newSplit = split + step; // proposed new position
if (newSplit < last) {
int splitPrefix = delta(sortedcodes, first, newSplit, K);
if (splitPrefix > commonPrefix) {
split = newSplit; // accept proposal
}
}
} while (step > 1);
return split;
}
__device__ int2 determine_range(int* sortedcodes, int K, int idx) {
int d = sign(delta(sortedcodes, idx, idx + 1, K) - delta(sortedcodes, idx, idx - 1, K));
int dmin = delta(sortedcodes, idx, idx - d, K);
int lmax = 2;
while (delta(sortedcodes, idx, idx + lmax * d, K) > dmin) {
lmax = lmax * 2;
}
int l = 0;
for (int t = lmax / 2; t >= 1; t /= 2) {
if (delta(sortedcodes, idx, idx + (l + t)*d, K) > dmin) {
l += t;
}
}
int j = idx + l*d;
int2 range;
range.x = min(idx, j);
range.y = max(idx, j);
return range;
}
__global__ void build_tree_kernel(
int N, int K,
int * sortedcodes,
int2 * nodechildren,
int * nodeparent) {
const int count = N * (K + K - 1);
for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < count; index += blockDim.x * gridDim.x) {
const int k = index % (K + K - 1);
const int n = index / (K + K - 1);
if (k >= K - 1) {
// leaf
nodechildren[n * (K + K - 1) + k] = make_int2(-(k - (K - 1)) - 1, -(k - (K - 1)) - 2);
} else {
// internal node
// find out which range of objects the node corresponds to
int2 range = determine_range(sortedcodes + n * K, K, k);
int first = range.x;
int last = range.y;
// determine where to split the range
int split = find_split(sortedcodes + n * K, first, last, K);
// select childA
int childa = split == first ? (K - 1) + split : split;
// select childB
int childb = split + 1 == last ? (K - 1) + split + 1 : split + 1;
// record parent-child relationships
nodechildren[n * (K + K - 1) + k] = make_int2(childa, childb);
nodeparent[n * (K + K - 1) + childa] = k;
nodeparent[n * (K + K - 1) + childb] = k;
}
}
}
template<typename PrimTransfT>
__global__ void compute_aabb_kernel(
int N, int K,
typename PrimTransfT::Data data,
int * sortedobjid,
int2 * nodechildren,
int * nodeparent,
float3 * nodeaabb,
int * atom) {
const int count = N * K;
for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < count; index += blockDim.x * gridDim.x) {
const int k = index % K;
const int n = index / K;
// compute BBOX for leaf
int kk = sortedobjid[n * K + k];
float3 pmin;
float3 pmax;
data.compute_aabb(n, kk, pmin, pmax);
nodeaabb[n * (K + K - 1) * 2 + ((K - 1) + k) * 2 + 0] = pmin;
nodeaabb[n * (K + K - 1) * 2 + ((K - 1) + k) * 2 + 1] = pmax;
int node = nodeparent[n * (K + K - 1) + ((K - 1) + k)];
while (node != -1 && atomicCAS(&atom[n * (K - 1) + node], 0, 1) == 1) {
int2 children = nodechildren[n * (K + K - 1) + node];
float3 laabbmin = nodeaabb[n * (K + K - 1) * 2 + children.x * 2 + 0];
float3 laabbmax = nodeaabb[n * (K + K - 1) * 2 + children.x * 2 + 1];
float3 raabbmin = nodeaabb[n * (K + K - 1) * 2 + children.y * 2 + 0];
float3 raabbmax = nodeaabb[n * (K + K - 1) * 2 + children.y * 2 + 1];
float3 aabbmin = fminf(laabbmin, raabbmin);
float3 aabbmax = fmaxf(laabbmax, raabbmax);
nodeaabb[n * (K + K - 1) * 2 + node * 2 + 0] = aabbmin;
nodeaabb[n * (K + K - 1) * 2 + node * 2 + 1] = aabbmax;
node = nodeparent[n * (K + K - 1) + node];
__threadfence();
}
}
}
void compute_morton_cuda(
int N, int K,
float * primpos,
int * code,
int algorithm,
cudaStream_t stream) {
int count = N * K;
int blocksize = 512;
int gridsize = (count + blocksize - 1) / blocksize;
std::shared_ptr<PrimTransfDataBase> primtransf_data;
primtransf_data = std::make_shared<PrimTransfSRT::Data>(PrimTransfSRT::Data{
PrimTransfDataBase{},
K, (float3*)primpos, nullptr,
K * 3, nullptr, nullptr,
K, nullptr, nullptr});
std::map<int, std::function<void(dim3, dim3, cudaStream_t, int, int, std::shared_ptr<PrimTransfDataBase>, int*)>> dispatcher = {
{ 0, make_cudacall(compute_morton_kernel<PrimTransfSRT>) }
};
auto iter = dispatcher.find(min(0, algorithm));
if (iter != dispatcher.end()) {
(iter->second)(
dim3(gridsize), dim3(blocksize), stream,
N, K,
primtransf_data,
code);
}
}
void build_tree_cuda(
int N, int K,
int * sortedcode,
int * nodechildren,
int * nodeparent,
cudaStream_t stream) {
int count = N * (K + K - 1);
int nthreads = 512;
int nblocks = (count + nthreads - 1) / nthreads;
build_tree_kernel<<<nblocks, nthreads, 0, stream>>>(
N, K,
sortedcode,
reinterpret_cast<int2 *>(nodechildren),
nodeparent);
}
void compute_aabb_cuda(
int N, int K,
float * primpos,
float * primrot,
float * primscale,
int * sortedobjid,
int * nodechildren,
int * nodeparent,
float * nodeaabb,
int algorithm,
cudaStream_t stream) {
int * atom;
cudaMalloc(&atom, N * (K - 1) * 4);
cudaMemset(atom, 0, N * (K - 1) * 4);
int count = N * K;
int blocksize = 512;
int gridsize = (count + blocksize - 1) / blocksize;
std::shared_ptr<PrimTransfDataBase> primtransf_data;
primtransf_data = std::make_shared<PrimTransfSRT::Data>(PrimTransfSRT::Data{
PrimTransfDataBase{},
K, (float3*)primpos, nullptr,
K * 3, (float3*)primrot, nullptr,
K, (float3*)primscale, nullptr});
std::map<int, std::function<void(dim3, dim3, cudaStream_t, int, int, std::shared_ptr<PrimTransfDataBase>, int*, int2*, int*, float3*, int*)>> dispatcher = {
{ 0, make_cudacall(compute_aabb_kernel<PrimTransfSRT>) }
};
auto iter = dispatcher.find(min(0, algorithm));
if (iter != dispatcher.end()) {
(iter->second)(
dim3(gridsize), dim3(blocksize), stream,
N, K,
primtransf_data,
sortedobjid,
reinterpret_cast<int2 *>(nodechildren),
nodeparent,
reinterpret_cast<float3 *>(nodeaabb),
atom);
}
cudaFree(atom);
}
|