|  | import gradio as gr | 
					
						
						|  | from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns | 
					
						
						|  | import pandas as pd | 
					
						
						|  | from apscheduler.schedulers.background import BackgroundScheduler | 
					
						
						|  | from huggingface_hub import snapshot_download | 
					
						
						|  |  | 
					
						
						|  | from src.about import ( | 
					
						
						|  | CITATION_BUTTON_LABEL, | 
					
						
						|  | CITATION_BUTTON_TEXT, | 
					
						
						|  | EVALUATION_QUEUE_TEXT, | 
					
						
						|  | INTRODUCTION_TEXT, | 
					
						
						|  | LLM_BENCHMARKS_TEXT, | 
					
						
						|  | TITLE, | 
					
						
						|  | ) | 
					
						
						|  | from src.display.css_html_js import custom_css | 
					
						
						|  | from src.display.utils import ( | 
					
						
						|  | BENCHMARK_COLS, | 
					
						
						|  | COLS, | 
					
						
						|  | EVAL_COLS, | 
					
						
						|  | EVAL_TYPES, | 
					
						
						|  | AutoEvalColumn, | 
					
						
						|  | ModelType, | 
					
						
						|  | fields, | 
					
						
						|  | WeightType, | 
					
						
						|  | Precision | 
					
						
						|  | ) | 
					
						
						|  | from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN | 
					
						
						|  | from src.populate import get_evaluation_queue_df, get_leaderboard_df | 
					
						
						|  | from src.submission.submit import add_new_eval | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def restart_space(): | 
					
						
						|  | API.restart_space(repo_id=REPO_ID) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | print(EVAL_REQUESTS_PATH) | 
					
						
						|  | snapshot_download( | 
					
						
						|  | repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | 
					
						
						|  | ) | 
					
						
						|  | except Exception: | 
					
						
						|  | restart_space() | 
					
						
						|  | try: | 
					
						
						|  | print(EVAL_RESULTS_PATH) | 
					
						
						|  | snapshot_download( | 
					
						
						|  | repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | 
					
						
						|  | ) | 
					
						
						|  | except Exception: | 
					
						
						|  | restart_space() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) | 
					
						
						|  |  | 
					
						
						|  | ( | 
					
						
						|  | finished_eval_queue_df, | 
					
						
						|  | running_eval_queue_df, | 
					
						
						|  | pending_eval_queue_df, | 
					
						
						|  | ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) | 
					
						
						|  |  | 
					
						
						|  | def init_leaderboard(dataframe): | 
					
						
						|  | if dataframe is None or dataframe.empty: | 
					
						
						|  | raise ValueError("Leaderboard DataFrame is empty or None.") | 
					
						
						|  | return Leaderboard( | 
					
						
						|  | value=dataframe, | 
					
						
						|  | datatype=[c.type for c in fields(AutoEvalColumn)], | 
					
						
						|  | select_columns=SelectColumns( | 
					
						
						|  | default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default], | 
					
						
						|  | cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden], | 
					
						
						|  | label="Select Columns to Display:", | 
					
						
						|  | ), | 
					
						
						|  | search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name], | 
					
						
						|  | hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], | 
					
						
						|  | filter_columns=[ | 
					
						
						|  | ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"), | 
					
						
						|  | ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"), | 
					
						
						|  | ColumnFilter( | 
					
						
						|  | AutoEvalColumn.params.name, | 
					
						
						|  | type="slider", | 
					
						
						|  | min=0.01, | 
					
						
						|  | max=150, | 
					
						
						|  | label="Select the number of parameters (B)", | 
					
						
						|  | ), | 
					
						
						|  | ColumnFilter( | 
					
						
						|  | AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True | 
					
						
						|  | ), | 
					
						
						|  | ], | 
					
						
						|  | bool_checkboxgroup_label="Hide models", | 
					
						
						|  | interactive=False, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | demo = gr.Blocks(css=custom_css) | 
					
						
						|  | with demo: | 
					
						
						|  | gr.HTML(TITLE) | 
					
						
						|  | gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | 
					
						
						|  |  | 
					
						
						|  | with gr.Tabs(elem_classes="tab-buttons") as tabs: | 
					
						
						|  | with gr.TabItem("π
 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): | 
					
						
						|  | leaderboard = init_leaderboard(LEADERBOARD_DF) | 
					
						
						|  |  | 
					
						
						|  | with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2): | 
					
						
						|  | gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | 
					
						
						|  |  | 
					
						
						|  | with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3): | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | 
					
						
						|  |  | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | with gr.Accordion( | 
					
						
						|  | f"β
 Finished Evaluations ({len(finished_eval_queue_df)})", | 
					
						
						|  | open=False, | 
					
						
						|  | ): | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | finished_eval_table = gr.components.Dataframe( | 
					
						
						|  | value=finished_eval_queue_df, | 
					
						
						|  | headers=EVAL_COLS, | 
					
						
						|  | datatype=EVAL_TYPES, | 
					
						
						|  | row_count=5, | 
					
						
						|  | ) | 
					
						
						|  | with gr.Accordion( | 
					
						
						|  | f"π Running Evaluation Queue ({len(running_eval_queue_df)})", | 
					
						
						|  | open=False, | 
					
						
						|  | ): | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | running_eval_table = gr.components.Dataframe( | 
					
						
						|  | value=running_eval_queue_df, | 
					
						
						|  | headers=EVAL_COLS, | 
					
						
						|  | datatype=EVAL_TYPES, | 
					
						
						|  | row_count=5, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | with gr.Accordion( | 
					
						
						|  | f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})", | 
					
						
						|  | open=False, | 
					
						
						|  | ): | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | pending_eval_table = gr.components.Dataframe( | 
					
						
						|  | value=pending_eval_queue_df, | 
					
						
						|  | headers=EVAL_COLS, | 
					
						
						|  | datatype=EVAL_TYPES, | 
					
						
						|  | row_count=5, | 
					
						
						|  | ) | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text") | 
					
						
						|  |  | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | model_name_textbox = gr.Textbox(label="Model name") | 
					
						
						|  | revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main") | 
					
						
						|  | model_type = gr.Dropdown( | 
					
						
						|  | choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown], | 
					
						
						|  | label="Model type", | 
					
						
						|  | multiselect=False, | 
					
						
						|  | value=None, | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | precision = gr.Dropdown( | 
					
						
						|  | choices=[i.value.name for i in Precision if i != Precision.Unknown], | 
					
						
						|  | label="Precision", | 
					
						
						|  | multiselect=False, | 
					
						
						|  | value="float16", | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | weight_type = gr.Dropdown( | 
					
						
						|  | choices=[i.value.name for i in WeightType], | 
					
						
						|  | label="Weights type", | 
					
						
						|  | multiselect=False, | 
					
						
						|  | value="Original", | 
					
						
						|  | interactive=True, | 
					
						
						|  | ) | 
					
						
						|  | base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)") | 
					
						
						|  |  | 
					
						
						|  | submit_button = gr.Button("Submit Eval") | 
					
						
						|  | submission_result = gr.Markdown() | 
					
						
						|  | submit_button.click( | 
					
						
						|  | add_new_eval, | 
					
						
						|  | [ | 
					
						
						|  | model_name_textbox, | 
					
						
						|  | base_model_name_textbox, | 
					
						
						|  | revision_name_textbox, | 
					
						
						|  | precision, | 
					
						
						|  | weight_type, | 
					
						
						|  | model_type, | 
					
						
						|  | ], | 
					
						
						|  | submission_result, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | with gr.Accordion("π Citation", open=False): | 
					
						
						|  | citation_button = gr.Textbox( | 
					
						
						|  | value=CITATION_BUTTON_TEXT, | 
					
						
						|  | label=CITATION_BUTTON_LABEL, | 
					
						
						|  | lines=20, | 
					
						
						|  | elem_id="citation-button", | 
					
						
						|  | show_copy_button=True, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | scheduler = BackgroundScheduler() | 
					
						
						|  | scheduler.add_job(restart_space, "interval", seconds=1800) | 
					
						
						|  | scheduler.start() | 
					
						
						|  | demo.queue(default_concurrency_limit=40).launch() |