Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import gradio as gr
|
|
2 |
from transformers import AutoTokenizer, AutoModel
|
3 |
from sklearn.metrics.pairwise import cosine_similarity
|
4 |
import torch
|
|
|
5 |
from gradio_client import Client
|
6 |
from functools import lru_cache
|
7 |
|
@@ -41,8 +42,13 @@ def precompute_label_embeddings():
|
|
41 |
|
42 |
label_embeddings = precompute_label_embeddings()
|
43 |
|
|
|
|
|
|
|
|
|
|
|
44 |
# Function to detect context
|
45 |
-
def detect_context(input_text,
|
46 |
# Encode the input text
|
47 |
inputs = tokenizer([input_text], padding=True, truncation=True, return_tensors="pt")
|
48 |
with torch.no_grad():
|
@@ -52,19 +58,19 @@ def detect_context(input_text, fallback_threshold=0.5): # Lowered threshold for
|
|
52 |
# Compute cosine similarities
|
53 |
similarities = cosine_similarity(input_embedding, label_embeddings)[0]
|
54 |
|
55 |
-
#
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
59 |
|
60 |
-
#
|
61 |
-
|
62 |
|
63 |
-
#
|
64 |
-
|
65 |
-
high_confidence_contexts = [("general", 1.0)] # Assign a default score of 1.0 for "general"
|
66 |
|
67 |
-
return
|
68 |
|
69 |
# Translation client
|
70 |
translation_client = Client("Frenchizer/space_7")
|
@@ -81,7 +87,7 @@ def process_request(input_text):
|
|
81 |
context_results = detect_context(input_text)
|
82 |
|
83 |
# Step 3: Print the list of high-confidence contexts
|
84 |
-
print("
|
85 |
|
86 |
# Return the translation and contexts
|
87 |
return translation, context_results
|
@@ -90,9 +96,9 @@ def process_request(input_text):
|
|
90 |
def gradio_interface(input_text):
|
91 |
translation, contexts = process_request(input_text)
|
92 |
# Format the output
|
93 |
-
output = f"Translation: {translation}\n\nDetected Contexts:\n"
|
94 |
for context, score in contexts:
|
95 |
-
output += f"- {context} (confidence: {score:.
|
96 |
return output.strip()
|
97 |
|
98 |
# Create the Gradio interface
|
|
|
2 |
from transformers import AutoTokenizer, AutoModel
|
3 |
from sklearn.metrics.pairwise import cosine_similarity
|
4 |
import torch
|
5 |
+
import numpy as np
|
6 |
from gradio_client import Client
|
7 |
from functools import lru_cache
|
8 |
|
|
|
42 |
|
43 |
label_embeddings = precompute_label_embeddings()
|
44 |
|
45 |
+
# Softmax function to convert scores to probabilities
|
46 |
+
def softmax(x):
|
47 |
+
exp_x = np.exp(x - np.max(x)) # Subtract max for numerical stability
|
48 |
+
return exp_x / exp_x.sum()
|
49 |
+
|
50 |
# Function to detect context
|
51 |
+
def detect_context(input_text, top_n=3):
|
52 |
# Encode the input text
|
53 |
inputs = tokenizer([input_text], padding=True, truncation=True, return_tensors="pt")
|
54 |
with torch.no_grad():
|
|
|
58 |
# Compute cosine similarities
|
59 |
similarities = cosine_similarity(input_embedding, label_embeddings)[0]
|
60 |
|
61 |
+
# Apply softmax to convert similarities to probabilities
|
62 |
+
probabilities = softmax(similarities)
|
63 |
+
|
64 |
+
# Pair each label with its probability
|
65 |
+
label_probabilities = list(zip(labels, probabilities))
|
66 |
|
67 |
+
# Sort by probability in descending order
|
68 |
+
label_probabilities.sort(key=lambda x: x[1], reverse=True)
|
69 |
|
70 |
+
# Select the top N contexts
|
71 |
+
top_contexts = label_probabilities[:top_n]
|
|
|
72 |
|
73 |
+
return top_contexts
|
74 |
|
75 |
# Translation client
|
76 |
translation_client = Client("Frenchizer/space_7")
|
|
|
87 |
context_results = detect_context(input_text)
|
88 |
|
89 |
# Step 3: Print the list of high-confidence contexts
|
90 |
+
print("Detected Contexts (Top 3):", context_results)
|
91 |
|
92 |
# Return the translation and contexts
|
93 |
return translation, context_results
|
|
|
96 |
def gradio_interface(input_text):
|
97 |
translation, contexts = process_request(input_text)
|
98 |
# Format the output
|
99 |
+
output = f"Translation: {translation}\n\nDetected Contexts (Top 3):\n"
|
100 |
for context, score in contexts:
|
101 |
+
output += f"- {context} (confidence: {score:.4f})\n"
|
102 |
return output.strip()
|
103 |
|
104 |
# Create the Gradio interface
|