Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,37 +1,50 @@
|
|
1 |
import numpy as np
|
2 |
import onnxruntime as ort
|
3 |
-
import
|
4 |
-
from transformers import MarianMTModel, MarianTokenizer
|
5 |
import gradio as gr
|
6 |
|
7 |
-
# Load the
|
8 |
-
model_path = "./
|
9 |
-
tokenizer = MarianTokenizer.from_pretrained(
|
10 |
-
decoder_model = MarianMTModel.from_pretrained(model_name).get_decoder()
|
11 |
|
12 |
-
# Load the ONNX
|
13 |
-
|
|
|
14 |
|
15 |
-
def translate_text(
|
16 |
-
# Tokenize input
|
17 |
tokenized_input = tokenizer(
|
18 |
-
|
19 |
)
|
20 |
input_ids = tokenized_input["input_ids"]
|
21 |
attention_mask = tokenized_input["attention_mask"]
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
32 |
|
33 |
# Decode the output tokens
|
34 |
-
|
35 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
|
|
37 |
interface.launch()
|
|
|
1 |
import numpy as np
|
2 |
import onnxruntime as ort
|
3 |
+
from transformers import MarianTokenizer
|
|
|
4 |
import gradio as gr
|
5 |
|
6 |
+
# Load the tokenizer from the local folder
|
7 |
+
model_path = "./onnx_model" # Path to the folder containing the model files
|
8 |
+
tokenizer = MarianTokenizer.from_pretrained(model_path)
|
|
|
9 |
|
10 |
+
# Load the ONNX model
|
11 |
+
onnx_model_path = "./model.onnx"
|
12 |
+
session = ort.InferenceSession(onnx_model_path)
|
13 |
|
14 |
+
def translate_text(input_texts):
|
15 |
+
# Tokenize input texts (batch processing)
|
16 |
tokenized_input = tokenizer(
|
17 |
+
input_texts, return_tensors="np", padding=True, truncation=True, max_length=512
|
18 |
)
|
19 |
input_ids = tokenized_input["input_ids"]
|
20 |
attention_mask = tokenized_input["attention_mask"]
|
21 |
|
22 |
+
decoder_start_token_id = translation_tokenizer.cls_token_id or translation_tokenizer.pad_token_id
|
23 |
+
decoder_input_ids = np.array([[decoder_start_token_id]], dtype=np.int64)
|
24 |
+
|
25 |
+
# Prepare inputs for ONNX model
|
26 |
+
ort_inputs = {
|
27 |
+
"input_ids": input_ids.astype(np.int64),
|
28 |
+
"attention_mask": attention_mask.astype(np.int64),
|
29 |
+
"decoder_input_ids": decoder_input_ids,
|
30 |
+
}
|
31 |
+
|
32 |
+
# Run inference using the ONNX model
|
33 |
+
ort_outputs = session.run(None, ort_inputs)
|
34 |
+
output_ids = ort_outputs[0] # Get the output token IDs
|
35 |
|
36 |
# Decode the output tokens
|
37 |
+
translated_texts = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
38 |
+
return translated_texts
|
39 |
+
|
40 |
+
# Gradio interface
|
41 |
+
interface = gr.Interface(
|
42 |
+
fn=translate_text,
|
43 |
+
inputs=gr.inputs.Textbox(lines=2, placeholder="Enter text to translate..."),
|
44 |
+
outputs="text",
|
45 |
+
title="MarianMT Translation",
|
46 |
+
description="Translate text using MarianMT model with ONNX runtime.",
|
47 |
+
)
|
48 |
|
49 |
+
# Launch the interface
|
50 |
interface.launch()
|