Spaces:
Build error
Build error
Commit
·
60b3f0e
1
Parent(s):
2d236b6
Upload 2 files
Browse files- app.py +74 -0
- requirements.txt +10 -0
app.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, pipeline
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
MODEL_FILE = "./model.onnx"
|
6 |
+
session = ort.InferenceSession(MODEL_FILE)
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-fr")
|
8 |
+
|
9 |
+
# Predefined labels for context detection
|
10 |
+
labels = [
|
11 |
+
"general", "pharma", "legal", "technical", "UI", "medicine", "it", "marketing",
|
12 |
+
"e-commerce", "programming", "website", "html", "keywords", "food commerce",
|
13 |
+
"personal development", "literature", "poetry", "physics", "chemistry", "biology",
|
14 |
+
"theater", "finance", "sports", "education", "politics", "economics", "art",
|
15 |
+
"history", "music", "gaming", "aerospace", "engineering", "robotics", "travel",
|
16 |
+
"tourism", "healthcare", "psychology", "environment", "fashion", "design",
|
17 |
+
"real estate", "retail", "news", "entertainment", "social media", "automotive",
|
18 |
+
"machine learning", "cryptocurrency", "blockchain", "philosophy", "anthropology",
|
19 |
+
"archaeology", "data science"
|
20 |
+
]
|
21 |
+
|
22 |
+
# Context detection pipeline
|
23 |
+
context_pipeline = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
24 |
+
|
25 |
+
def detect_context(input_text):
|
26 |
+
result = context_pipeline(input_text, candidate_labels=labels)
|
27 |
+
return result["labels"][0]
|
28 |
+
|
29 |
+
def gradio_predict(input_text):
|
30 |
+
try:
|
31 |
+
tokenized_input = tokenizer(
|
32 |
+
input_text, return_tensors="np", padding=True, truncation=True, max_length=512
|
33 |
+
)
|
34 |
+
input_ids = tokenized_input["input_ids"].astype(np.int64)
|
35 |
+
attention_mask = tokenized_input["attention_mask"].astype(np.int64)
|
36 |
+
|
37 |
+
decoder_start_token_id = tokenizer.cls_token_id or tokenizer.pad_token_id
|
38 |
+
decoder_input_ids = np.array([[decoder_start_token_id]], dtype=np.int64)
|
39 |
+
|
40 |
+
for _ in range(512):
|
41 |
+
outputs = session.run(
|
42 |
+
None,
|
43 |
+
{
|
44 |
+
"input_ids": input_ids,
|
45 |
+
"attention_mask": attention_mask,
|
46 |
+
"decoder_input_ids": decoder_input_ids,
|
47 |
+
}
|
48 |
+
)
|
49 |
+
|
50 |
+
logits = outputs[0]
|
51 |
+
next_token_id = np.argmax(logits[:, -1, :], axis=-1).item()
|
52 |
+
decoder_input_ids = np.concatenate(
|
53 |
+
[decoder_input_ids, np.array([[next_token_id]], dtype=np.int64)], axis=1
|
54 |
+
)
|
55 |
+
|
56 |
+
if next_token_id == tokenizer.eos_token_id:
|
57 |
+
break
|
58 |
+
|
59 |
+
translated_text = tokenizer.decode(decoder_input_ids[0], skip_special_tokens=True)
|
60 |
+
|
61 |
+
return {
|
62 |
+
"translation": translated_text,
|
63 |
+
"context": detect_context(input_text)
|
64 |
+
}
|
65 |
+
|
66 |
+
except Exception as e:
|
67 |
+
return f"Error: {str(e)}"
|
68 |
+
|
69 |
+
gr.Interface(
|
70 |
+
fn=gradio_predict,
|
71 |
+
inputs="text",
|
72 |
+
outputs=["text", "text"],
|
73 |
+
live=True
|
74 |
+
).launch()
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn
|
3 |
+
onnxruntime
|
4 |
+
transformers
|
5 |
+
numpy
|
6 |
+
pydantic
|
7 |
+
requests
|
8 |
+
gradio
|
9 |
+
sentencepiece
|
10 |
+
sacremoses
|