Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,15 @@
|
|
1 |
-
from fastapi import FastAPI, HTTPException,
|
2 |
-
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
|
3 |
-
from pydantic import BaseModel
|
4 |
from huggingface_hub import snapshot_download, HfApi
|
5 |
import os
|
6 |
import shutil
|
7 |
-
from typing import Optional
|
8 |
import asyncio
|
9 |
from concurrent.futures import ThreadPoolExecutor
|
|
|
10 |
|
11 |
-
|
12 |
-
|
|
|
|
|
13 |
|
14 |
# Thread pool for running blocking operations
|
15 |
executor = ThreadPoolExecutor(max_workers=2)
|
@@ -20,140 +20,100 @@ DOWNLOAD_DIR = "./downloaded_model_data"
|
|
20 |
# Ensure the download directory exists
|
21 |
os.makedirs(DOWNLOAD_DIR, exist_ok=True)
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
download_dir: Optional[str] = DOWNLOAD_DIR
|
26 |
-
|
27 |
-
class UploadRequest(BaseModel):
|
28 |
-
dataset_repo_id: str
|
29 |
-
folder_path: str
|
30 |
-
path_in_repo: str
|
31 |
-
|
32 |
-
class TransferRequest(BaseModel):
|
33 |
-
model_repo_id: str
|
34 |
-
dataset_repo_id: str
|
35 |
-
path_in_repo: Optional[str] = None
|
36 |
-
|
37 |
-
def get_token(credentials: HTTPAuthorizationCredentials = Depends(security)) -> str:
|
38 |
-
"""Extract and validate Hugging Face token from Authorization header."""
|
39 |
-
return credentials.credentials
|
40 |
-
|
41 |
-
def download_full_model(repo_id: str, download_dir: str) -> str:
|
42 |
-
"""Downloads an entire model from a Hugging Face model repository."""
|
43 |
-
print(f"Downloading full model from {repo_id}...")
|
44 |
-
local_dir = snapshot_download(repo_id=repo_id, cache_dir=download_dir)
|
45 |
-
print(f"Downloaded to: {local_dir}")
|
46 |
-
return local_dir
|
47 |
-
|
48 |
-
def upload_folder_to_dataset(dataset_repo_id: str, folder_path: str, path_in_repo: str, token: str):
|
49 |
-
"""Uploads a folder to a Hugging Face dataset repository."""
|
50 |
-
api = HfApi(token=token)
|
51 |
-
print(f"Uploading {folder_path} to {dataset_repo_id} at {path_in_repo}...")
|
52 |
-
api.upload_folder(
|
53 |
-
folder_path=folder_path,
|
54 |
-
path_in_repo=path_in_repo,
|
55 |
-
repo_id=dataset_repo_id,
|
56 |
-
repo_type="dataset",
|
57 |
-
)
|
58 |
-
print("Upload complete!")
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
"
|
68 |
try:
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
download_full_model,
|
74 |
-
request.model_repo_id,
|
75 |
-
request.download_dir
|
76 |
)
|
77 |
-
|
78 |
-
return
|
79 |
-
"message": f"Model {request.model_repo_id} downloaded successfully",
|
80 |
-
"local_path": local_dir
|
81 |
-
}
|
82 |
except Exception as e:
|
83 |
-
|
|
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
88 |
try:
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
loop = asyncio.get_event_loop()
|
95 |
-
await loop.run_in_executor(
|
96 |
-
executor,
|
97 |
-
upload_folder_to_dataset,
|
98 |
-
request.dataset_repo_id,
|
99 |
-
request.folder_path,
|
100 |
-
request.path_in_repo,
|
101 |
-
token
|
102 |
)
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
"path_in_repo": request.path_in_repo
|
107 |
-
}
|
108 |
-
except HTTPException:
|
109 |
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
except Exception as e:
|
111 |
-
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
"""Download a model and upload it to a dataset repository (combined operation)."""
|
116 |
try:
|
117 |
-
# Set default path in repo if not provided
|
118 |
-
path_in_repo = request.path_in_repo or f"model_data/{request.model_repo_id}/"
|
119 |
-
|
120 |
# Download the model
|
121 |
loop = asyncio.get_event_loop()
|
122 |
local_dir = await loop.run_in_executor(
|
123 |
executor,
|
124 |
-
download_full_model
|
125 |
-
request.model_repo_id,
|
126 |
-
DOWNLOAD_DIR
|
127 |
)
|
128 |
|
129 |
# Upload to dataset
|
130 |
await loop.run_in_executor(
|
131 |
executor,
|
132 |
upload_folder_to_dataset,
|
133 |
-
|
134 |
-
local_dir,
|
135 |
-
path_in_repo,
|
136 |
-
token
|
137 |
)
|
138 |
|
139 |
-
# Clean up downloaded files
|
140 |
-
|
|
|
|
|
141 |
|
142 |
-
return {
|
143 |
-
"message": f"Model {request.model_repo_id} transferred successfully to {request.dataset_repo_id}",
|
144 |
-
"path_in_repo": path_in_repo
|
145 |
-
}
|
146 |
except Exception as e:
|
147 |
-
|
|
|
148 |
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
@app.get("/status")
|
159 |
async def get_status():
|
@@ -167,12 +127,13 @@ async def get_status():
|
|
167 |
"total": disk_usage.total,
|
168 |
"used": disk_usage.used,
|
169 |
"free": disk_usage.free
|
170 |
-
}
|
|
|
|
|
171 |
}
|
172 |
except Exception as e:
|
173 |
raise HTTPException(status_code=500, detail=f"Status check failed: {str(e)}")
|
174 |
|
175 |
if __name__ == "__main__":
|
176 |
import uvicorn
|
177 |
-
uvicorn.run(app, host="0.0.0.0", port=7860)
|
178 |
-
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException, BackgroundTasks
|
|
|
|
|
2 |
from huggingface_hub import snapshot_download, HfApi
|
3 |
import os
|
4 |
import shutil
|
|
|
5 |
import asyncio
|
6 |
from concurrent.futures import ThreadPoolExecutor
|
7 |
+
from dotenv import load_dotenv
|
8 |
|
9 |
+
# Load environment variables from .env file
|
10 |
+
load_dotenv()
|
11 |
+
|
12 |
+
app = FastAPI(title="Hugging Face Model Transfer Service", version="1.0.0")
|
13 |
|
14 |
# Thread pool for running blocking operations
|
15 |
executor = ThreadPoolExecutor(max_workers=2)
|
|
|
20 |
# Ensure the download directory exists
|
21 |
os.makedirs(DOWNLOAD_DIR, exist_ok=True)
|
22 |
|
23 |
+
# Hardcoded model repository ID
|
24 |
+
HARDCODED_MODEL_REPO_ID = "openai/gpt-oss-120b" # Change this to your desired model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
# Hardcoded dataset repository ID
|
27 |
+
HARDCODED_DATASET_REPO_ID = "Fred808/helium_memory" # Change this to your dataset
|
28 |
+
|
29 |
+
# Hardcoded path in repository
|
30 |
+
HARDCODED_PATH_IN_REPO = "model_data2/"
|
31 |
+
|
32 |
+
# Get Hugging Face token from environment variable
|
33 |
+
HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
34 |
+
if not HF_TOKEN:
|
35 |
+
raise ValueError("HUGGINGFACE_HUB_TOKEN environment variable is not set")
|
36 |
|
37 |
+
def download_full_model() -> str:
|
38 |
+
"""Downloads the hardcoded model from Hugging Face model repository."""
|
39 |
+
print(f"Downloading hardcoded model {HARDCODED_MODEL_REPO_ID}...")
|
40 |
try:
|
41 |
+
local_dir = snapshot_download(
|
42 |
+
repo_id=HARDCODED_MODEL_REPO_ID,
|
43 |
+
cache_dir=DOWNLOAD_DIR,
|
44 |
+
token=HF_TOKEN
|
|
|
|
|
|
|
45 |
)
|
46 |
+
print(f"Downloaded to: {local_dir}")
|
47 |
+
return local_dir
|
|
|
|
|
|
|
48 |
except Exception as e:
|
49 |
+
print(f"Download failed: {str(e)}")
|
50 |
+
raise
|
51 |
|
52 |
+
def upload_folder_to_dataset(folder_path: str):
|
53 |
+
"""Uploads a folder to the hardcoded Hugging Face dataset repository."""
|
54 |
+
api = HfApi(token=HF_TOKEN)
|
55 |
+
print(f"Uploading {folder_path} to {HARDCODED_DATASET_REPO_ID} at {HARDCODED_PATH_IN_REPO}...")
|
56 |
try:
|
57 |
+
api.upload_folder(
|
58 |
+
folder_path=folder_path,
|
59 |
+
path_in_repo=HARDCODED_PATH_IN_REPO,
|
60 |
+
repo_id=HARDCODED_DATASET_REPO_ID,
|
61 |
+
repo_type="dataset",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
)
|
63 |
+
print("Upload complete!")
|
64 |
+
except Exception as e:
|
65 |
+
print(f"Upload failed: {str(e)}")
|
|
|
|
|
|
|
66 |
raise
|
67 |
+
|
68 |
+
def cleanup_download(local_dir: str):
|
69 |
+
"""Clean up downloaded files."""
|
70 |
+
try:
|
71 |
+
if os.path.exists(local_dir):
|
72 |
+
shutil.rmtree(local_dir)
|
73 |
+
print(f"Cleaned up: {local_dir}")
|
74 |
except Exception as e:
|
75 |
+
print(f"Cleanup failed: {str(e)}")
|
76 |
|
77 |
+
async def transfer_model():
|
78 |
+
"""Download the hardcoded model and upload it to the hardcoded dataset repository."""
|
|
|
79 |
try:
|
|
|
|
|
|
|
80 |
# Download the model
|
81 |
loop = asyncio.get_event_loop()
|
82 |
local_dir = await loop.run_in_executor(
|
83 |
executor,
|
84 |
+
download_full_model
|
|
|
|
|
85 |
)
|
86 |
|
87 |
# Upload to dataset
|
88 |
await loop.run_in_executor(
|
89 |
executor,
|
90 |
upload_folder_to_dataset,
|
91 |
+
local_dir
|
|
|
|
|
|
|
92 |
)
|
93 |
|
94 |
+
# Clean up downloaded files
|
95 |
+
cleanup_download(local_dir)
|
96 |
+
|
97 |
+
print(f"Model {HARDCODED_MODEL_REPO_ID} transferred successfully to {HARDCODED_DATASET_REPO_ID}")
|
98 |
|
|
|
|
|
|
|
|
|
99 |
except Exception as e:
|
100 |
+
print(f"Transfer failed: {str(e)}")
|
101 |
+
raise
|
102 |
|
103 |
+
@app.get("/")
|
104 |
+
async def root():
|
105 |
+
"""Health check endpoint."""
|
106 |
+
return {
|
107 |
+
"message": "Hugging Face Model Transfer Service is running",
|
108 |
+
"hardcoded_model": HARDCODED_MODEL_REPO_ID,
|
109 |
+
"hardcoded_dataset": HARDCODED_DATASET_REPO_ID
|
110 |
+
}
|
111 |
+
|
112 |
+
@app.on_event("startup")
|
113 |
+
async def startup_event():
|
114 |
+
"""Run the transfer process when the application starts."""
|
115 |
+
print("Starting model transfer process...")
|
116 |
+
asyncio.create_task(transfer_model())
|
117 |
|
118 |
@app.get("/status")
|
119 |
async def get_status():
|
|
|
127 |
"total": disk_usage.total,
|
128 |
"used": disk_usage.used,
|
129 |
"free": disk_usage.free
|
130 |
+
},
|
131 |
+
"model": HARDCODED_MODEL_REPO_ID,
|
132 |
+
"dataset": HARDCODED_DATASET_REPO_ID
|
133 |
}
|
134 |
except Exception as e:
|
135 |
raise HTTPException(status_code=500, detail=f"Status check failed: {str(e)}")
|
136 |
|
137 |
if __name__ == "__main__":
|
138 |
import uvicorn
|
139 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|