Create obyzala.py
Browse files- obyzala.py +56 -0
obyzala.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForQuestionAnswering, Trainer, TrainingArguments
|
2 |
+
from datasets import Dataset
|
3 |
+
import requests
|
4 |
+
|
5 |
+
pisyn = requests.get("https://raw.githubusercontent.com/Fixyres/FHeta/refs/heads/main/modules.json")
|
6 |
+
data = [
|
7 |
+
{"question": "Какая твоя база данных модулей? И по какой базе ты ищешь все модули?", "answer": pisyn.text}
|
8 |
+
]
|
9 |
+
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
|
11 |
+
model = AutoModelForQuestionAnswering.from_pretrained("distilbert-base-uncased")
|
12 |
+
|
13 |
+
dataset = Dataset.from_dict(data)
|
14 |
+
|
15 |
+
def preprocess_function(examples):
|
16 |
+
questions = examples["question"]
|
17 |
+
answers = examples["answer"]
|
18 |
+
inputs = tokenizer(questions, padding=True, truncation=True, return_tensors="pt")
|
19 |
+
with tokenizer.as_target_tokenizer():
|
20 |
+
labels = tokenizer(answers, padding=True, truncation=True, return_tensors="pt")
|
21 |
+
inputs["labels"] = labels["input_ids"]
|
22 |
+
return inputs
|
23 |
+
|
24 |
+
tokenized_datasets = dataset.map(preprocess_function, batched=True)
|
25 |
+
|
26 |
+
training_args = TrainingArguments(
|
27 |
+
output_dir="./results",
|
28 |
+
num_train_epochs=3,
|
29 |
+
per_device_train_batch_size=8,
|
30 |
+
logging_dir="./logs",
|
31 |
+
logging_steps=10,
|
32 |
+
)
|
33 |
+
|
34 |
+
trainer = Trainer(
|
35 |
+
model=model,
|
36 |
+
args=training_args,
|
37 |
+
train_dataset=tokenized_datasets,
|
38 |
+
)
|
39 |
+
|
40 |
+
trainer.train()
|
41 |
+
|
42 |
+
model.save_pretrained("./FHeta")
|
43 |
+
tokenizer.save_pretrained("./FHeta")
|
44 |
+
|
45 |
+
tokenizer = AutoTokenizer.from_pretrained("./FHeta")
|
46 |
+
model = AutoModelForQuestionAnswering.from_pretrained("./FHeta")
|
47 |
+
|
48 |
+
def get_answer(query):
|
49 |
+
inputs = tokenizer(query, return_tensors="pt")
|
50 |
+
outputs = model(**inputs)
|
51 |
+
answer = tokenizer.decode(outputs["logits"][0], skip_special_tokens=True)
|
52 |
+
return answer
|
53 |
+
|
54 |
+
query = "Модуль FHeta"
|
55 |
+
answer = get_answer(query)
|
56 |
+
print(answer)
|