import torch
import requests
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from datasets import load_dataset
from pydantic import BaseModel
from fastapi import FastAPI


class URLPayload(BaseModel):
    url: str

app = FastAPI()

def process_audio(url: str):
    response = requests.get(url)
    with open("/data/audio.mp3", mode="wb") as file:
        file.write(response.content)


    device = "cuda"

    model_id = "openai/whisper-large-v3"
    model = AutoModelForSpeechSeq2Seq.from_pretrained(
            model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, use_safetensors=True
            )
    model.to(device)

    processor = AutoProcessor.from_pretrained(model_id)
    pipe = pipeline(
            "automatic-speech-recognition",
            model=model,
            tokenizer=processor.tokenizer,
            feature_extractor=processor.feature_extractor,
            max_new_tokens=8192,
            chunk_length_s=30,
            batch_size=16,
            return_timestamps=True,
            torch_dtype=torch.float16,
            device=device
    )
    dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
    whisper_result = pipe("/data/audio.mp3", generate_kwargs={"language": "polish"})
    return whisper_result


@app.post("/process/")
async def process_audio_endpoint(payload: URLPayload):
    result = process_audio(payload.url)
    return result