Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,18 @@
|
|
1 |
from fastapi import FastAPI
|
2 |
-
from fastapi.middleware.cors import CORSMiddleware
|
3 |
-
import gradio as gr
|
4 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
5 |
import torch
|
6 |
import os
|
7 |
|
8 |
-
# === FastAPI
|
9 |
app = FastAPI()
|
10 |
|
11 |
-
#
|
12 |
app.add_middleware(
|
13 |
CORSMiddleware,
|
14 |
-
allow_origins=["*"],
|
15 |
-
allow_methods=["*"],
|
16 |
-
allow_headers=["*"],
|
17 |
)
|
18 |
|
19 |
# === 模型加载 ===
|
@@ -23,30 +22,15 @@ tokenizer = AutoTokenizer.from_pretrained("mrm8488/codebert-base-finetuned-detec
|
|
23 |
|
24 |
# === HTTP API 接口 ===
|
25 |
@app.post("/detect")
|
26 |
-
async def
|
27 |
-
"""HTTP API 接口"""
|
28 |
try:
|
29 |
inputs = tokenizer(code[:2000], return_tensors="pt", truncation=True, max_length=512)
|
30 |
with torch.no_grad():
|
31 |
outputs = model(**inputs)
|
32 |
label_id = outputs.logits.argmax().item()
|
33 |
return {
|
34 |
-
"label": int(label_id), #
|
35 |
"score": outputs.logits.softmax(dim=-1)[0][label_id].item()
|
36 |
}
|
37 |
except Exception as e:
|
38 |
-
return {"error": str(e)}
|
39 |
-
|
40 |
-
# === Gradio 界面(可选)===
|
41 |
-
def gradio_predict(code: str):
|
42 |
-
result = api_detect(code)
|
43 |
-
return f"Prediction: {result['label']} (Confidence: {result['score']:.2f})"
|
44 |
-
|
45 |
-
gr_interface = gr.Interface(
|
46 |
-
fn=gradio_predict,
|
47 |
-
inputs=gr.Textbox(lines=10, placeholder="Paste code here..."),
|
48 |
-
outputs="text",
|
49 |
-
title="Code Security Detector"
|
50 |
-
)
|
51 |
-
|
52 |
-
app = gr.mount_gradio_app(app, gr_interface, path="/")
|
|
|
1 |
from fastapi import FastAPI
|
2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
|
|
3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
import torch
|
5 |
import os
|
6 |
|
7 |
+
# === FastAPI 配置 ===
|
8 |
app = FastAPI()
|
9 |
|
10 |
+
# 解决 CSP 限制的关键配置
|
11 |
app.add_middleware(
|
12 |
CORSMiddleware,
|
13 |
+
allow_origins=["*"],
|
14 |
+
allow_methods=["*"],
|
15 |
+
allow_headers=["*"],
|
16 |
)
|
17 |
|
18 |
# === 模型加载 ===
|
|
|
22 |
|
23 |
# === HTTP API 接口 ===
|
24 |
@app.post("/detect")
|
25 |
+
async def detect(code: str):
|
|
|
26 |
try:
|
27 |
inputs = tokenizer(code[:2000], return_tensors="pt", truncation=True, max_length=512)
|
28 |
with torch.no_grad():
|
29 |
outputs = model(**inputs)
|
30 |
label_id = outputs.logits.argmax().item()
|
31 |
return {
|
32 |
+
"label": int(label_id), # 严格返回 0/1
|
33 |
"score": outputs.logits.softmax(dim=-1)[0][label_id].item()
|
34 |
}
|
35 |
except Exception as e:
|
36 |
+
return {"error": str(e)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|