import torch.nn as nn


class ResidualBlock(nn.Module):
    def __init__(self, in_planes, planes, norm_fn="group", stride=1):
        super(ResidualBlock, self).__init__()

        self.conv1 = nn.Conv2d(
            in_planes, planes, kernel_size=3, padding=1, stride=stride
        )
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1)
        self.relu = nn.ReLU(inplace=True)

        num_groups = planes // 8

        if norm_fn == "batch":
            self.norm1 = nn.BatchNorm2d(planes)
            self.norm2 = nn.BatchNorm2d(planes)
            if not stride == 1:
                self.norm3 = nn.BatchNorm2d(planes)

        elif norm_fn == "instance":
            self.norm1 = nn.InstanceNorm2d(planes)
            self.norm2 = nn.InstanceNorm2d(planes)
            if not stride == 1:
                self.norm3 = nn.InstanceNorm2d(planes)

        if stride == 1:
            self.downsample = None
        else:
            self.downsample = nn.Sequential(
                nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm3
            )

    def forward(self, x):
        y = x
        y = self.relu(self.norm1(self.conv1(y)))
        y = self.relu(self.norm2(self.conv2(y)))

        if self.downsample is not None:
            x = self.downsample(x)

        return self.relu(x + y)


class BottleneckBlock(nn.Module):
    def __init__(self, in_planes, planes, norm_fn="group", stride=1):
        super(BottleneckBlock, self).__init__()

        self.conv1 = nn.Conv2d(in_planes, planes // 4, kernel_size=1, padding=0)
        self.conv2 = nn.Conv2d(
            planes // 4, planes // 4, kernel_size=3, padding=1, stride=stride
        )
        self.conv3 = nn.Conv2d(planes // 4, planes, kernel_size=1, padding=0)
        self.relu = nn.ReLU(inplace=True)

        if norm_fn == "batch":
            self.norm1 = nn.BatchNorm2d(planes // 4)
            self.norm2 = nn.BatchNorm2d(planes // 4)
            self.norm3 = nn.BatchNorm2d(planes)
            if not stride == 1:
                self.norm4 = nn.BatchNorm2d(planes)

        elif norm_fn == "instance":
            self.norm1 = nn.InstanceNorm2d(planes // 4)
            self.norm2 = nn.InstanceNorm2d(planes // 4)
            self.norm3 = nn.InstanceNorm2d(planes)
            if not stride == 1:
                self.norm4 = nn.InstanceNorm2d(planes)

        if stride == 1:
            self.downsample = None
        else:
            self.downsample = nn.Sequential(
                nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm4
            )

    def forward(self, x):
        y = x
        y = self.relu(self.norm1(self.conv1(y)))
        y = self.relu(self.norm2(self.conv2(y)))
        y = self.relu(self.norm3(self.conv3(y)))

        if self.downsample is not None:
            x = self.downsample(x)

        return self.relu(x + y)


class BasicEncoder(nn.Module):
    def __init__(self, output_dim=128, norm_fn="batch", dropout=0.0):
        super(BasicEncoder, self).__init__()
        self.norm_fn = norm_fn

        if self.norm_fn == "batch":
            self.norm1 = nn.BatchNorm2d(64)

        elif self.norm_fn == "instance":
            self.norm1 = nn.InstanceNorm2d(64)

        self.conv1 = nn.Conv2d(3, 80, kernel_size=7, stride=2, padding=3)
        self.relu1 = nn.ReLU(inplace=True)

        self.in_planes = 80
        self.layer1 = self._make_layer(80, stride=1)
        self.layer2 = self._make_layer(160, stride=2)
        self.layer3 = self._make_layer(240, stride=2)

        # output convolution
        self.conv2 = nn.Conv2d(240, output_dim, kernel_size=1)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
            elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)):
                if m.weight is not None:
                    nn.init.constant_(m.weight, 1)
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)

    def _make_layer(self, dim, stride=1):
        layer1 = ResidualBlock(self.in_planes, dim, self.norm_fn, stride=stride)
        layer2 = ResidualBlock(dim, dim, self.norm_fn, stride=1)
        layers = (layer1, layer2)

        self.in_planes = dim
        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.norm1(x)
        x = self.relu1(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)

        x = self.conv2(x)

        return x