import torch.nn as nn class ResidualBlock(nn.Module): def __init__(self, in_planes, planes, norm_fn="group", stride=1): super(ResidualBlock, self).__init__() self.conv1 = nn.Conv2d( in_planes, planes, kernel_size=3, padding=1, stride=stride ) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1) self.relu = nn.ReLU(inplace=True) num_groups = planes // 8 if norm_fn == "batch": self.norm1 = nn.BatchNorm2d(planes) self.norm2 = nn.BatchNorm2d(planes) if not stride == 1: self.norm3 = nn.BatchNorm2d(planes) elif norm_fn == "instance": self.norm1 = nn.InstanceNorm2d(planes) self.norm2 = nn.InstanceNorm2d(planes) if not stride == 1: self.norm3 = nn.InstanceNorm2d(planes) if stride == 1: self.downsample = None else: self.downsample = nn.Sequential( nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm3 ) def forward(self, x): y = x y = self.relu(self.norm1(self.conv1(y))) y = self.relu(self.norm2(self.conv2(y))) if self.downsample is not None: x = self.downsample(x) return self.relu(x + y) class BottleneckBlock(nn.Module): def __init__(self, in_planes, planes, norm_fn="group", stride=1): super(BottleneckBlock, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes // 4, kernel_size=1, padding=0) self.conv2 = nn.Conv2d( planes // 4, planes // 4, kernel_size=3, padding=1, stride=stride ) self.conv3 = nn.Conv2d(planes // 4, planes, kernel_size=1, padding=0) self.relu = nn.ReLU(inplace=True) if norm_fn == "batch": self.norm1 = nn.BatchNorm2d(planes // 4) self.norm2 = nn.BatchNorm2d(planes // 4) self.norm3 = nn.BatchNorm2d(planes) if not stride == 1: self.norm4 = nn.BatchNorm2d(planes) elif norm_fn == "instance": self.norm1 = nn.InstanceNorm2d(planes // 4) self.norm2 = nn.InstanceNorm2d(planes // 4) self.norm3 = nn.InstanceNorm2d(planes) if not stride == 1: self.norm4 = nn.InstanceNorm2d(planes) if stride == 1: self.downsample = None else: self.downsample = nn.Sequential( nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm4 ) def forward(self, x): y = x y = self.relu(self.norm1(self.conv1(y))) y = self.relu(self.norm2(self.conv2(y))) y = self.relu(self.norm3(self.conv3(y))) if self.downsample is not None: x = self.downsample(x) return self.relu(x + y) class BasicEncoder(nn.Module): def __init__(self, output_dim=128, norm_fn="batch", dropout=0.0): super(BasicEncoder, self).__init__() self.norm_fn = norm_fn if self.norm_fn == "batch": self.norm1 = nn.BatchNorm2d(64) elif self.norm_fn == "instance": self.norm1 = nn.InstanceNorm2d(64) self.conv1 = nn.Conv2d(3, 80, kernel_size=7, stride=2, padding=3) self.relu1 = nn.ReLU(inplace=True) self.in_planes = 80 self.layer1 = self._make_layer(80, stride=1) self.layer2 = self._make_layer(160, stride=2) self.layer3 = self._make_layer(240, stride=2) # output convolution self.conv2 = nn.Conv2d(240, output_dim, kernel_size=1) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)): if m.weight is not None: nn.init.constant_(m.weight, 1) if m.bias is not None: nn.init.constant_(m.bias, 0) def _make_layer(self, dim, stride=1): layer1 = ResidualBlock(self.in_planes, dim, self.norm_fn, stride=stride) layer2 = ResidualBlock(dim, dim, self.norm_fn, stride=1) layers = (layer1, layer2) self.in_planes = dim return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.norm1(x) x = self.relu1(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.conv2(x) return x