Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -259,15 +259,18 @@ pdf_path=os.path.join(os.path.abspath(""), "hidden-technical-debt-in-machine-lea
|
|
259 |
pdf_path2=os.path.join(os.path.abspath(""), "1812_05944.pdf")
|
260 |
|
261 |
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
# =======================================
|
267 |
#
|
268 |
# =======================================
|
269 |
def sentence_to_audio(fileobj):
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
|
|
|
271 |
# text mining from pdf
|
272 |
text_per_page = read_pdf(fileobj.name)
|
273 |
text_per_page.keys()
|
@@ -293,15 +296,30 @@ def sentence_to_audio(fileobj):
|
|
293 |
summary_text=summary[0].get("summary_text")
|
294 |
|
295 |
# Sentence 2 Speech
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
305 |
|
306 |
|
307 |
# ============================================================================================
|
|
|
259 |
pdf_path2=os.path.join(os.path.abspath(""), "1812_05944.pdf")
|
260 |
|
261 |
|
|
|
|
|
|
|
|
|
262 |
# =======================================
|
263 |
#
|
264 |
# =======================================
|
265 |
def sentence_to_audio(fileobj):
|
266 |
+
from transformers import pipeline, AutoProcessor, AutoModel
|
267 |
+
import torch
|
268 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
269 |
+
from transformers import pipeline
|
270 |
+
import numpy as np
|
271 |
+
import scipy
|
272 |
|
273 |
+
|
274 |
# text mining from pdf
|
275 |
text_per_page = read_pdf(fileobj.name)
|
276 |
text_per_page.keys()
|
|
|
296 |
summary_text=summary[0].get("summary_text")
|
297 |
|
298 |
# Sentence 2 Speech
|
299 |
+
|
300 |
+
|
301 |
+
#txt1="Hello ->> " + fileobj.name + " <<!"
|
302 |
+
#txt1="Hello"
|
303 |
+
#txt2="ciccio"
|
304 |
+
|
305 |
+
# Sentence 2 Speech
|
306 |
+
s_to_s = pipeline("text-to-speech", model="suno/bark-small")
|
307 |
+
generated_audio=s_to_s(summary_text,forward_params={"do_sample": True})
|
308 |
+
scipy.io.wavfile.write("s_2_s.wav", rate=generated_audio["sampling_rate"], data=generated_audio["audio"].T)
|
309 |
+
return "s_2_s.wav",summary_text
|
310 |
+
|
311 |
+
|
312 |
+
|
313 |
+
|
314 |
+
# processor = AutoProcessor.from_pretrained("suno/bark-small")
|
315 |
+
# model = AutoModel.from_pretrained("suno/bark-small")
|
316 |
+
# inputs = processor(
|
317 |
+
# text=summary_text,
|
318 |
+
# return_tensors="pt",
|
319 |
+
# )
|
320 |
+
# speech_values = model.generate(**inputs, do_sample=True)
|
321 |
+
# sampling_rate = model.generation_config.sample_rate
|
322 |
+
# return sampling_rate, speech_values.cpu().numpy().squeeze(),summary_text
|
323 |
|
324 |
|
325 |
# ============================================================================================
|