FlavioBF commited on
Commit
e9043bc
·
1 Parent(s): 7540c6b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -13
app.py CHANGED
@@ -259,15 +259,18 @@ pdf_path=os.path.join(os.path.abspath(""), "hidden-technical-debt-in-machine-lea
259
  pdf_path2=os.path.join(os.path.abspath(""), "1812_05944.pdf")
260
 
261
 
262
-
263
-
264
-
265
-
266
  # =======================================
267
  #
268
  # =======================================
269
  def sentence_to_audio(fileobj):
 
 
 
 
 
 
270
 
 
271
  # text mining from pdf
272
  text_per_page = read_pdf(fileobj.name)
273
  text_per_page.keys()
@@ -293,15 +296,30 @@ def sentence_to_audio(fileobj):
293
  summary_text=summary[0].get("summary_text")
294
 
295
  # Sentence 2 Speech
296
- processor = AutoProcessor.from_pretrained("suno/bark-small")
297
- model = AutoModel.from_pretrained("suno/bark-small")
298
- inputs = processor(
299
- text=summary_text,
300
- return_tensors="pt",
301
- )
302
- speech_values = model.generate(**inputs, do_sample=True)
303
- sampling_rate = model.generation_config.sample_rate
304
- return sampling_rate, speech_values.cpu().numpy().squeeze(),summary_text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
305
 
306
 
307
  # ============================================================================================
 
259
  pdf_path2=os.path.join(os.path.abspath(""), "1812_05944.pdf")
260
 
261
 
 
 
 
 
262
  # =======================================
263
  #
264
  # =======================================
265
  def sentence_to_audio(fileobj):
266
+ from transformers import pipeline, AutoProcessor, AutoModel
267
+ import torch
268
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
269
+ from transformers import pipeline
270
+ import numpy as np
271
+ import scipy
272
 
273
+
274
  # text mining from pdf
275
  text_per_page = read_pdf(fileobj.name)
276
  text_per_page.keys()
 
296
  summary_text=summary[0].get("summary_text")
297
 
298
  # Sentence 2 Speech
299
+
300
+
301
+ #txt1="Hello ->> " + fileobj.name + " <<!"
302
+ #txt1="Hello"
303
+ #txt2="ciccio"
304
+
305
+ # Sentence 2 Speech
306
+ s_to_s = pipeline("text-to-speech", model="suno/bark-small")
307
+ generated_audio=s_to_s(summary_text,forward_params={"do_sample": True})
308
+ scipy.io.wavfile.write("s_2_s.wav", rate=generated_audio["sampling_rate"], data=generated_audio["audio"].T)
309
+ return "s_2_s.wav",summary_text
310
+
311
+
312
+
313
+
314
+ # processor = AutoProcessor.from_pretrained("suno/bark-small")
315
+ # model = AutoModel.from_pretrained("suno/bark-small")
316
+ # inputs = processor(
317
+ # text=summary_text,
318
+ # return_tensors="pt",
319
+ # )
320
+ # speech_values = model.generate(**inputs, do_sample=True)
321
+ # sampling_rate = model.generation_config.sample_rate
322
+ # return sampling_rate, speech_values.cpu().numpy().squeeze(),summary_text
323
 
324
 
325
  # ============================================================================================