Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -269,7 +269,35 @@ from transformers import pipeline, AutoProcessor, AutoModel
|
|
269 |
# =======================================
|
270 |
#
|
271 |
# =======================================
|
272 |
-
def sentence_to_audio(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
# Sentence 2 Speech
|
274 |
processor = AutoProcessor.from_pretrained("suno/bark-small")
|
275 |
model = AutoModel.from_pretrained("suno/bark-small")
|
@@ -282,42 +310,18 @@ def sentence_to_audio(summary_txt):
|
|
282 |
return sampling_rate, speech_values.cpu().numpy().squeeze()
|
283 |
|
284 |
|
285 |
-
#text_per_page = read_pdf(pdf_path)
|
286 |
-
#text_per_page.keys()
|
287 |
-
#page_1 = text_per_page['Page_0']
|
288 |
-
|
289 |
# ============================================================================================
|
290 |
|
291 |
-
# picking up the abstract from the first page content
|
292 |
-
#flag=False
|
293 |
-
#abstract_sect=""
|
294 |
-
|
295 |
-
#for i in range(len(page_1)):
|
296 |
-
# if page_1[0][i].strip()=="Abstract":
|
297 |
-
# flag=True
|
298 |
-
# if page_1[0][i].strip()=="1 Introduction":
|
299 |
-
# flag = False
|
300 |
-
# if flag:
|
301 |
-
# # abstract_sect contains the Abstract section content
|
302 |
-
# abstract_sect+=page_1[0][i]
|
303 |
-
|
304 |
-
|
305 |
-
#from transformers import pipeline
|
306 |
-
#
|
307 |
-
#summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY")
|
308 |
-
#summary=(summarizer(abstract_sect))
|
309 |
-
#summary_text=summary[0].get("summary_text")
|
310 |
-
#print(summary_text)
|
311 |
|
312 |
|
313 |
# ===========================================================
|
314 |
|
315 |
-
summary_txt="It is dangerous to think of machine learning as a free-to-use toolkit, as it is common to incur ongoing maintenance costs in real-world ML systems"
|
316 |
|
317 |
sentence_to_audio(summary_txt)
|
318 |
|
319 |
pdf_path=os.path.join(os.path.abspath(""), "hidden-technical-debt-in-machine-learning-systems-Paper.pdf")
|
320 |
pdf_path2=os.path.join(os.path.abspath(""), "1812_05944.pdf")
|
321 |
|
322 |
-
demo = gr.Interface(fn=sentence_to_audio, inputs="file", outputs="audio",examples=[pdf_path,pdf_path2])
|
323 |
demo.launch(share=True)
|
|
|
269 |
# =======================================
|
270 |
#
|
271 |
# =======================================
|
272 |
+
def sentence_to_audio(fileobj):
|
273 |
+
|
274 |
+
|
275 |
+
from transformers import pipeline
|
276 |
+
|
277 |
+
# text mining from pdf
|
278 |
+
text_per_page = read_pdf(fileobj.name)
|
279 |
+
text_per_page.keys()
|
280 |
+
page_1 = text_per_page['Page_0']
|
281 |
+
|
282 |
+
|
283 |
+
# picking up the abstract from the first page content
|
284 |
+
flag=False
|
285 |
+
abstract_sect=""
|
286 |
+
|
287 |
+
for i in range(len(page_1)):
|
288 |
+
if page_1[0][i].strip()=="Abstract":
|
289 |
+
flag=True
|
290 |
+
if page_1[0][i].strip()=="1 Introduction":
|
291 |
+
flag = False
|
292 |
+
if flag:
|
293 |
+
# abstract_sect contains the Abstract section content
|
294 |
+
abstract_sect+=page_1[0][i]
|
295 |
+
|
296 |
+
# abstract summarization
|
297 |
+
summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY")
|
298 |
+
summary=(summarizer(abstract_sect))
|
299 |
+
summary_text=summary[0].get("summary_text")
|
300 |
+
|
301 |
# Sentence 2 Speech
|
302 |
processor = AutoProcessor.from_pretrained("suno/bark-small")
|
303 |
model = AutoModel.from_pretrained("suno/bark-small")
|
|
|
310 |
return sampling_rate, speech_values.cpu().numpy().squeeze()
|
311 |
|
312 |
|
|
|
|
|
|
|
|
|
313 |
# ============================================================================================
|
314 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
|
316 |
|
317 |
# ===========================================================
|
318 |
|
319 |
+
#summary_txt="It is dangerous to think of machine learning as a free-to-use toolkit, as it is common to incur ongoing maintenance costs in real-world ML systems"
|
320 |
|
321 |
sentence_to_audio(summary_txt)
|
322 |
|
323 |
pdf_path=os.path.join(os.path.abspath(""), "hidden-technical-debt-in-machine-learning-systems-Paper.pdf")
|
324 |
pdf_path2=os.path.join(os.path.abspath(""), "1812_05944.pdf")
|
325 |
|
326 |
+
demo = gr.Interface(fn=sentence_to_audio, inputs="file", outputs=["audio","text"],examples=[pdf_path,pdf_path2])
|
327 |
demo.launch(share=True)
|