Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -8,28 +8,6 @@
|
|
8 |
# PDF
|
9 |
# -------------------------
|
10 |
|
11 |
-
#!pip install PyPDF2
|
12 |
-
#!pip install pdfminer.six
|
13 |
-
#!pip install pdfplumber
|
14 |
-
#!pip install pdf2image
|
15 |
-
#!pip install Pillow
|
16 |
-
#!pip install pytesseract
|
17 |
-
#!pip install poppler-utils
|
18 |
-
#!pip install tesseract-ocr
|
19 |
-
#!pip install libtesseract-dev
|
20 |
-
|
21 |
-
#!pip install fastapi
|
22 |
-
#!pip install -q torch
|
23 |
-
#!pip install -q transformers
|
24 |
-
#!pip install -q gradio
|
25 |
-
#!pip install ffmpeg
|
26 |
-
|
27 |
-
|
28 |
-
#!apt-get install poppler-utils
|
29 |
-
#!apt install tesseract-ocr
|
30 |
-
#!apt install libtesseract-dev
|
31 |
-
|
32 |
-
|
33 |
# To read the PDF
|
34 |
import PyPDF2
|
35 |
# To analyze the PDF layout and extract text
|
@@ -281,35 +259,6 @@ pdf_path=os.path.join(os.path.abspath(""), "hidden-technical-debt-in-machine-lea
|
|
281 |
pdf_path2=os.path.join(os.path.abspath(""), "1812_05944.pdf")
|
282 |
|
283 |
|
284 |
-
text_per_page = read_pdf(pdf_path)
|
285 |
-
|
286 |
-
text_per_page.keys()
|
287 |
-
|
288 |
-
|
289 |
-
page_1 = text_per_page['Page_0']
|
290 |
-
|
291 |
-
# ============================================================================================
|
292 |
-
|
293 |
-
# picking up the abstract from the first page content
|
294 |
-
flag=False
|
295 |
-
abstract_sect=""
|
296 |
-
|
297 |
-
for i in range(len(page_1)):
|
298 |
-
if page_1[0][i].strip()=="Abstract":
|
299 |
-
flag=True
|
300 |
-
if page_1[0][i].strip()=="1 Introduction":
|
301 |
-
flag = False
|
302 |
-
if flag:
|
303 |
-
# abstract_sect contains the Abstract section content
|
304 |
-
abstract_sect+=page_1[0][i]
|
305 |
-
|
306 |
-
|
307 |
-
from transformers import pipeline
|
308 |
-
|
309 |
-
summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY")
|
310 |
-
summary=(summarizer(abstract_sect))
|
311 |
-
summary_text=summary[0].get("summary_text")
|
312 |
-
print(summary_text)
|
313 |
|
314 |
|
315 |
|
@@ -333,8 +282,39 @@ def sentence_to_audio(summary_txt):
|
|
333 |
return sampling_rate, speech_values.cpu().numpy().squeeze()
|
334 |
|
335 |
|
336 |
-
|
337 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
|
339 |
pdf_path=os.path.join(os.path.abspath(""), "hidden-technical-debt-in-machine-learning-systems-Paper.pdf")
|
340 |
pdf_path2=os.path.join(os.path.abspath(""), "1812_05944.pdf")
|
|
|
8 |
# PDF
|
9 |
# -------------------------
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# To read the PDF
|
12 |
import PyPDF2
|
13 |
# To analyze the PDF layout and extract text
|
|
|
259 |
pdf_path2=os.path.join(os.path.abspath(""), "1812_05944.pdf")
|
260 |
|
261 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
|
263 |
|
264 |
|
|
|
282 |
return sampling_rate, speech_values.cpu().numpy().squeeze()
|
283 |
|
284 |
|
285 |
+
text_per_page = read_pdf(pdf_path)
|
286 |
+
text_per_page.keys()
|
287 |
+
page_1 = text_per_page['Page_0']
|
288 |
+
|
289 |
+
# ============================================================================================
|
290 |
+
|
291 |
+
# picking up the abstract from the first page content
|
292 |
+
#flag=False
|
293 |
+
#abstract_sect=""
|
294 |
+
|
295 |
+
#for i in range(len(page_1)):
|
296 |
+
# if page_1[0][i].strip()=="Abstract":
|
297 |
+
# flag=True
|
298 |
+
# if page_1[0][i].strip()=="1 Introduction":
|
299 |
+
# flag = False
|
300 |
+
# if flag:
|
301 |
+
# # abstract_sect contains the Abstract section content
|
302 |
+
# abstract_sect+=page_1[0][i]
|
303 |
+
|
304 |
+
|
305 |
+
#from transformers import pipeline
|
306 |
+
#
|
307 |
+
#summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY")
|
308 |
+
#summary=(summarizer(abstract_sect))
|
309 |
+
#summary_text=summary[0].get("summary_text")
|
310 |
+
#print(summary_text)
|
311 |
+
|
312 |
+
|
313 |
+
# ===========================================================
|
314 |
+
|
315 |
+
summary_txt="It is dangerous to think of machine learning as a free-to-use toolkit, as it is common to incur ongoing maintenance costs in real-world ML systems"
|
316 |
+
|
317 |
+
sentence_to_audio(summary_txt)
|
318 |
|
319 |
pdf_path=os.path.join(os.path.abspath(""), "hidden-technical-debt-in-machine-learning-systems-Paper.pdf")
|
320 |
pdf_path2=os.path.join(os.path.abspath(""), "1812_05944.pdf")
|