FlameF0X commited on
Commit
e09ff9d
·
verified ·
1 Parent(s): ee3e83a

Delete modeling_snowflake.py.txt

Browse files
Files changed (1) hide show
  1. modeling_snowflake.py.txt +0 -112
modeling_snowflake.py.txt DELETED
@@ -1,112 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- import math
4
-
5
- # --- Submodule: FusedQKVAttention ---
6
- class FusedQKVAttention(nn.Module):
7
- def __init__(self, d_model, num_heads):
8
- super().__init__()
9
- self.d_model = d_model
10
- self.num_heads = num_heads
11
- self.head_dim = d_model // num_heads
12
- # Fused QKV projection
13
- self.qkv_proj = nn.Linear(d_model, 3 * d_model)
14
- self.wo = nn.Linear(d_model, d_model)
15
- # Initialize weights for better training stability
16
- nn.init.xavier_uniform_(self.qkv_proj.weight)
17
- nn.init.xavier_uniform_(self.wo.weight)
18
- nn.init.zeros_(self.qkv_proj.bias)
19
- nn.init.zeros_(self.wo.bias)
20
-
21
- def forward(self, x, attention_mask=None):
22
- batch_size, seq_len, _ = x.shape
23
- # Fused projection and reshape
24
- qkv = self.qkv_proj(x).reshape(batch_size, seq_len, 3, self.num_heads, self.head_dim)
25
- qkv = qkv.permute(2, 0, 3, 1, 4) # [3, batch, heads, seq_len, head_dim]
26
- q, k, v = qkv[0], qkv[1], qkv[2]
27
- # Compute attention with memory efficiency
28
- attention_scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim)
29
- if attention_mask is not None:
30
- attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
31
- attention_scores = attention_scores.masked_fill(attention_mask == 0, float('-inf'))
32
- attention_weights = torch.softmax(attention_scores, dim=-1)
33
- # Apply attention and reshape
34
- context = torch.matmul(attention_weights, v)
35
- context = context.transpose(1, 2).reshape(batch_size, seq_len, self.d_model)
36
- return self.wo(context)
37
-
38
-
39
- # --- Submodule: EnhancedFeedForward ---
40
- class EnhancedFeedForward(nn.Module):
41
- def __init__(self, d_model, ff_dim, dropout=0.1):
42
- super().__init__()
43
- self.linear1 = nn.Linear(d_model, ff_dim)
44
- self.dropout1 = nn.Dropout(dropout)
45
- self.linear2 = nn.Linear(ff_dim, d_model)
46
- self.dropout2 = nn.Dropout(dropout)
47
- self.activation = nn.GELU()
48
- # Initialize weights for better training
49
- nn.init.xavier_uniform_(self.linear1.weight)
50
- nn.init.xavier_uniform_(self.linear2.weight)
51
- nn.init.zeros_(self.linear1.bias)
52
- nn.init.zeros_(self.linear2.bias)
53
-
54
- def forward(self, x):
55
- return self.dropout2(self.linear2(self.dropout1(self.activation(self.linear1(x)))))
56
-
57
-
58
- # --- Submodule: EnhancedTransformerBlock ---
59
- class EnhancedTransformerBlock(nn.Module):
60
- def __init__(self, d_model, num_heads, ff_dim, dropout=0.1):
61
- super().__init__()
62
- self.attention = FusedQKVAttention(d_model, num_heads)
63
- self.norm1 = nn.LayerNorm(d_model, eps=1e-6)
64
- self.dropout1 = nn.Dropout(dropout)
65
- self.feed_forward = EnhancedFeedForward(d_model, ff_dim, dropout)
66
- self.norm2 = nn.LayerNorm(d_model, eps=1e-6)
67
- self.dropout2 = nn.Dropout(dropout)
68
-
69
- def forward(self, x, attention_mask=None):
70
- # Pre-norm architecture
71
- attn_input = self.norm1(x)
72
- attn_output = self.attention(attn_input, attention_mask)
73
- x = x + self.dropout1(attn_output)
74
- ff_input = self.norm2(x)
75
- ff_output = self.feed_forward(ff_input)
76
- x = x + self.dropout2(ff_output)
77
- return x
78
-
79
-
80
- # --- Main Model Class: Snowflake4CausalLM ---
81
- class Snowflake4CausalLM(nn.Module):
82
- def __init__(self, vocab_size, max_seq_length, d_model, num_heads, num_layers, ff_dim, dropout=0.1):
83
- super().__init__()
84
- self.embedding = nn.Embedding(vocab_size, d_model)
85
- # Initialize positional encodings without in-place modification
86
- self.pos_encoding = nn.Parameter(torch.zeros(1, max_seq_length, d_model))
87
- position = torch.arange(max_seq_length).unsqueeze(1).float()
88
- div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
89
- pos_enc = torch.zeros(1, max_seq_length, d_model)
90
- pos_enc[0, :, 0::2] = torch.sin(position * div_term)
91
- pos_enc[0, :, 1::2] = torch.cos(position * div_term)
92
- self.pos_encoding.data = pos_enc.data
93
- self.layers = nn.ModuleList([
94
- EnhancedTransformerBlock(d_model, num_heads, ff_dim, dropout)
95
- for _ in range(num_layers)
96
- ])
97
- self.final_norm = nn.LayerNorm(d_model, eps=1e-6)
98
- self.dropout = nn.Dropout(dropout)
99
- self.fc_out = nn.Linear(d_model, vocab_size)
100
- # Tie embedding and output weights for memory efficiency and better generalization
101
- self.fc_out.weight = self.embedding.weight
102
- # Initialize embedding weights
103
- nn.init.normal_(self.embedding.weight, mean=0, std=0.02)
104
-
105
- def forward(self, input_ids, attention_mask=None):
106
- seq_length = input_ids.size(1)
107
- x = self.embedding(input_ids) + self.pos_encoding[:, :seq_length, :]
108
- x = self.dropout(x)
109
- for layer in self.layers:
110
- x = layer(x, attention_mask)
111
- x = self.final_norm(x)
112
- return self.fc_out(x)