Update app.py
Browse files
app.py
CHANGED
@@ -2,19 +2,9 @@ import os
|
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
import datetime
|
5 |
-
from spaces import GPU
|
6 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline
|
7 |
from safetensors.torch import load_file
|
8 |
|
9 |
-
import spaces
|
10 |
-
|
11 |
-
@spaces.GPU
|
12 |
-
def use_gpu():
|
13 |
-
import torch
|
14 |
-
print("Torch CUDA available:", torch.cuda.is_available())
|
15 |
-
return {"cuda_available": torch.cuda.is_available()}
|
16 |
-
|
17 |
-
|
18 |
# Constants
|
19 |
MODEL_CONFIG = {
|
20 |
"G0-Release": "FlameF0X/Snowflake-G0-Release",
|
@@ -28,13 +18,11 @@ TOP_P_DEFAULT = 0.9
|
|
28 |
TOP_K_DEFAULT = 40
|
29 |
MAX_NEW_TOKENS_DEFAULT = 256
|
30 |
|
31 |
-
# UI parameter bounds
|
32 |
TEMPERATURE_MIN, TEMPERATURE_MAX = 0.1, 2.0
|
33 |
TOP_P_MIN, TOP_P_MAX = 0.1, 1.0
|
34 |
TOP_K_MIN, TOP_K_MAX = 1, 100
|
35 |
MAX_NEW_TOKENS_MIN, MAX_NEW_TOKENS_MAX = 16, 1024
|
36 |
|
37 |
-
# Styling
|
38 |
css = """
|
39 |
.gradio-container { background-color: #1e1e2f !important; color: #e0e0e0 !important; }
|
40 |
.header { background-color: #2b2b3c; padding: 20px; margin-bottom: 20px; border-radius: 10px; text-align: center; }
|
@@ -48,7 +36,6 @@ css = """
|
|
48 |
.model-select { background-color: #2a2a4a; padding: 10px; border-radius: 8px; margin-bottom: 15px; }
|
49 |
"""
|
50 |
|
51 |
-
# Model registry
|
52 |
model_registry = {}
|
53 |
|
54 |
def load_all_models():
|
@@ -64,10 +51,11 @@ def load_all_models():
|
|
64 |
model = load_file(safetensor_path)
|
65 |
else:
|
66 |
print("Loading from Hugging Face or .bin...")
|
|
|
67 |
model = AutoModelForCausalLM.from_pretrained(
|
68 |
model_id,
|
69 |
-
torch_dtype=torch.
|
70 |
-
device_map=
|
71 |
)
|
72 |
|
73 |
pipeline = TextGenerationPipeline(
|
@@ -83,7 +71,7 @@ def generate_text(prompt, model_version, temperature, top_p, top_k, max_new_toke
|
|
83 |
if history is None:
|
84 |
history = []
|
85 |
history.append({"role": "user", "content": prompt})
|
86 |
-
|
87 |
try:
|
88 |
if model_version not in model_registry:
|
89 |
raise ValueError(f"Model '{model_version}' not found.")
|
@@ -110,7 +98,7 @@ def generate_text(prompt, model_version, temperature, top_p, top_k, max_new_toke
|
|
110 |
formatted_history.append(f"{prefix}{entry['content']}")
|
111 |
|
112 |
return response, history, "\n\n".join(formatted_history)
|
113 |
-
|
114 |
except Exception as e:
|
115 |
error_msg = f"Error generating response: {str(e)}"
|
116 |
history.append({"role": "assistant", "content": f"[ERROR] {error_msg}", "model": model_version})
|
@@ -121,14 +109,13 @@ def clear_conversation():
|
|
121 |
|
122 |
def create_demo():
|
123 |
with gr.Blocks(css=css) as demo:
|
124 |
-
# Header
|
125 |
gr.HTML("""
|
126 |
<div class="header">
|
127 |
<h1><span class="snowflake-icon">❄️</span> Snowflake Models Demo</h1>
|
128 |
<p>Experience the capabilities of the Snowflake series language models</p>
|
129 |
</div>
|
130 |
""")
|
131 |
-
|
132 |
with gr.Column():
|
133 |
with gr.Row(elem_classes="model-select"):
|
134 |
model_version = gr.Radio(
|
@@ -137,21 +124,21 @@ def create_demo():
|
|
137 |
label="Select Model Version",
|
138 |
info="Choose which Snowflake model to use"
|
139 |
)
|
140 |
-
|
141 |
chat_history_display = gr.Textbox(
|
142 |
-
value="",
|
143 |
-
label="Conversation History",
|
144 |
-
lines=10,
|
145 |
max_lines=30,
|
146 |
interactive=False
|
147 |
)
|
148 |
-
|
149 |
history_state = gr.State([])
|
150 |
-
|
151 |
with gr.Row():
|
152 |
with gr.Column(scale=4):
|
153 |
prompt = gr.Textbox(
|
154 |
-
placeholder="Type your message here...",
|
155 |
label="Your Input",
|
156 |
lines=2
|
157 |
)
|
@@ -160,14 +147,13 @@ def create_demo():
|
|
160 |
clear_btn = gr.Button("Clear Conversation")
|
161 |
|
162 |
response_output = gr.Textbox(
|
163 |
-
value="",
|
164 |
-
label="Model Response",
|
165 |
lines=5,
|
166 |
max_lines=10,
|
167 |
interactive=False
|
168 |
)
|
169 |
-
|
170 |
-
# Generation Parameters
|
171 |
with gr.Accordion("Generation Parameters", open=False):
|
172 |
with gr.Column(elem_classes="parameter-section"):
|
173 |
with gr.Row():
|
@@ -193,8 +179,7 @@ def create_demo():
|
|
193 |
value=MAX_NEW_TOKENS_DEFAULT, step=8,
|
194 |
label="Maximum New Tokens"
|
195 |
)
|
196 |
-
|
197 |
-
# Example prompts
|
198 |
examples = [
|
199 |
"Write a short story about a snowflake that comes to life.",
|
200 |
"Explain the concept of artificial neural networks to a 10-year-old.",
|
@@ -211,14 +196,13 @@ def create_demo():
|
|
211 |
label="Click on an example to try it",
|
212 |
examples_per_page=5
|
213 |
)
|
214 |
-
|
215 |
gr.HTML(f"""
|
216 |
<div class="footer">
|
217 |
<p>Snowflake Models Demo • Created with Gradio • {datetime.datetime.now().year}</p>
|
218 |
</div>
|
219 |
""")
|
220 |
-
|
221 |
-
# Interactions
|
222 |
submit_btn.click(
|
223 |
fn=generate_text,
|
224 |
inputs=[prompt, model_version, temperature, top_p, top_k, max_new_tokens, history_state],
|
@@ -253,6 +237,5 @@ except Exception as e:
|
|
253 |
</div>
|
254 |
""")
|
255 |
|
256 |
-
# Run app
|
257 |
if __name__ == "__main__":
|
258 |
demo.launch()
|
|
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
import datetime
|
|
|
5 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline
|
6 |
from safetensors.torch import load_file
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
# Constants
|
9 |
MODEL_CONFIG = {
|
10 |
"G0-Release": "FlameF0X/Snowflake-G0-Release",
|
|
|
18 |
TOP_K_DEFAULT = 40
|
19 |
MAX_NEW_TOKENS_DEFAULT = 256
|
20 |
|
|
|
21 |
TEMPERATURE_MIN, TEMPERATURE_MAX = 0.1, 2.0
|
22 |
TOP_P_MIN, TOP_P_MAX = 0.1, 1.0
|
23 |
TOP_K_MIN, TOP_K_MAX = 1, 100
|
24 |
MAX_NEW_TOKENS_MIN, MAX_NEW_TOKENS_MAX = 16, 1024
|
25 |
|
|
|
26 |
css = """
|
27 |
.gradio-container { background-color: #1e1e2f !important; color: #e0e0e0 !important; }
|
28 |
.header { background-color: #2b2b3c; padding: 20px; margin-bottom: 20px; border-radius: 10px; text-align: center; }
|
|
|
36 |
.model-select { background-color: #2a2a4a; padding: 10px; border-radius: 8px; margin-bottom: 15px; }
|
37 |
"""
|
38 |
|
|
|
39 |
model_registry = {}
|
40 |
|
41 |
def load_all_models():
|
|
|
51 |
model = load_file(safetensor_path)
|
52 |
else:
|
53 |
print("Loading from Hugging Face or .bin...")
|
54 |
+
# Key fix: no device_map, load on CPU only
|
55 |
model = AutoModelForCausalLM.from_pretrained(
|
56 |
model_id,
|
57 |
+
torch_dtype=torch.float32,
|
58 |
+
device_map=None
|
59 |
)
|
60 |
|
61 |
pipeline = TextGenerationPipeline(
|
|
|
71 |
if history is None:
|
72 |
history = []
|
73 |
history.append({"role": "user", "content": prompt})
|
74 |
+
|
75 |
try:
|
76 |
if model_version not in model_registry:
|
77 |
raise ValueError(f"Model '{model_version}' not found.")
|
|
|
98 |
formatted_history.append(f"{prefix}{entry['content']}")
|
99 |
|
100 |
return response, history, "\n\n".join(formatted_history)
|
101 |
+
|
102 |
except Exception as e:
|
103 |
error_msg = f"Error generating response: {str(e)}"
|
104 |
history.append({"role": "assistant", "content": f"[ERROR] {error_msg}", "model": model_version})
|
|
|
109 |
|
110 |
def create_demo():
|
111 |
with gr.Blocks(css=css) as demo:
|
|
|
112 |
gr.HTML("""
|
113 |
<div class="header">
|
114 |
<h1><span class="snowflake-icon">❄️</span> Snowflake Models Demo</h1>
|
115 |
<p>Experience the capabilities of the Snowflake series language models</p>
|
116 |
</div>
|
117 |
""")
|
118 |
+
|
119 |
with gr.Column():
|
120 |
with gr.Row(elem_classes="model-select"):
|
121 |
model_version = gr.Radio(
|
|
|
124 |
label="Select Model Version",
|
125 |
info="Choose which Snowflake model to use"
|
126 |
)
|
127 |
+
|
128 |
chat_history_display = gr.Textbox(
|
129 |
+
value="",
|
130 |
+
label="Conversation History",
|
131 |
+
lines=10,
|
132 |
max_lines=30,
|
133 |
interactive=False
|
134 |
)
|
135 |
+
|
136 |
history_state = gr.State([])
|
137 |
+
|
138 |
with gr.Row():
|
139 |
with gr.Column(scale=4):
|
140 |
prompt = gr.Textbox(
|
141 |
+
placeholder="Type your message here...",
|
142 |
label="Your Input",
|
143 |
lines=2
|
144 |
)
|
|
|
147 |
clear_btn = gr.Button("Clear Conversation")
|
148 |
|
149 |
response_output = gr.Textbox(
|
150 |
+
value="",
|
151 |
+
label="Model Response",
|
152 |
lines=5,
|
153 |
max_lines=10,
|
154 |
interactive=False
|
155 |
)
|
156 |
+
|
|
|
157 |
with gr.Accordion("Generation Parameters", open=False):
|
158 |
with gr.Column(elem_classes="parameter-section"):
|
159 |
with gr.Row():
|
|
|
179 |
value=MAX_NEW_TOKENS_DEFAULT, step=8,
|
180 |
label="Maximum New Tokens"
|
181 |
)
|
182 |
+
|
|
|
183 |
examples = [
|
184 |
"Write a short story about a snowflake that comes to life.",
|
185 |
"Explain the concept of artificial neural networks to a 10-year-old.",
|
|
|
196 |
label="Click on an example to try it",
|
197 |
examples_per_page=5
|
198 |
)
|
199 |
+
|
200 |
gr.HTML(f"""
|
201 |
<div class="footer">
|
202 |
<p>Snowflake Models Demo • Created with Gradio • {datetime.datetime.now().year}</p>
|
203 |
</div>
|
204 |
""")
|
205 |
+
|
|
|
206 |
submit_btn.click(
|
207 |
fn=generate_text,
|
208 |
inputs=[prompt, model_version, temperature, top_p, top_k, max_new_tokens, history_state],
|
|
|
237 |
</div>
|
238 |
""")
|
239 |
|
|
|
240 |
if __name__ == "__main__":
|
241 |
demo.launch()
|