FlameF0X commited on
Commit
98402a5
·
verified ·
1 Parent(s): 63a7f6a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -130
app.py CHANGED
@@ -1,152 +1,44 @@
1
  import gradio as gr
2
- from transformers import PreTrainedTokenizerFast, AutoConfig
3
- from safetensors.torch import load_model
4
  import torch
5
- import math
6
- import torch.nn as nn
7
 
8
-
9
- # --- Define Snowflake4CausalLM ---
10
- class FusedQKVAttention(nn.Module):
11
- def __init__(self, d_model, num_heads):
12
- super().__init__()
13
- self.d_model = d_model
14
- self.num_heads = num_heads
15
- self.head_dim = d_model // num_heads
16
- self.qkv_proj = nn.Linear(d_model, 3 * d_model)
17
- self.wo = nn.Linear(d_model, d_model)
18
- nn.init.xavier_uniform_(self.qkv_proj.weight)
19
- nn.init.xavier_uniform_(self.wo.weight)
20
- nn.init.zeros_(self.qkv_proj.bias)
21
- nn.init.zeros_(self.wo.bias)
22
-
23
- def forward(self, x, attention_mask=None):
24
- batch_size, seq_len, _ = x.shape
25
- qkv = self.qkv_proj(x).reshape(batch_size, seq_len, 3, self.num_heads, self.head_dim)
26
- qkv = qkv.permute(2, 0, 3, 1, 4)
27
- q, k, v = qkv[0], qkv[1], qkv[2]
28
- attention_scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim)
29
- if attention_mask is not None:
30
- attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
31
- attention_scores = attention_scores.masked_fill(attention_mask == 0, float('-inf'))
32
- attention_weights = torch.softmax(attention_scores, dim=-1)
33
- context = torch.matmul(attention_weights, v)
34
- context = context.transpose(1, 2).reshape(batch_size, seq_len, self.d_model)
35
- return self.wo(context)
36
-
37
-
38
- class EnhancedFeedForward(nn.Module):
39
- def __init__(self, d_model, ff_dim, dropout=0.1):
40
- super().__init__()
41
- self.linear1 = nn.Linear(d_model, ff_dim)
42
- self.dropout1 = nn.Dropout(dropout)
43
- self.linear2 = nn.Linear(ff_dim, d_model)
44
- self.dropout2 = nn.Dropout(dropout)
45
- self.activation = nn.GELU()
46
- nn.init.xavier_uniform_(self.linear1.weight)
47
- nn.init.xavier_uniform_(self.linear2.weight)
48
- nn.init.zeros_(self.linear1.bias)
49
- nn.init.zeros_(self.linear2.bias)
50
-
51
- def forward(self, x):
52
- return self.dropout2(self.linear2(self.dropout1(self.activation(self.linear1(x)))))
53
-
54
-
55
- class EnhancedTransformerBlock(nn.Module):
56
- def __init__(self, d_model, num_heads, ff_dim, dropout=0.1):
57
- super().__init__()
58
- self.attention = FusedQKVAttention(d_model, num_heads)
59
- self.norm1 = nn.LayerNorm(d_model, eps=1e-6)
60
- self.dropout1 = nn.Dropout(dropout)
61
- self.feed_forward = EnhancedFeedForward(d_model, ff_dim, dropout)
62
- self.norm2 = nn.LayerNorm(d_model, eps=1e-6)
63
- self.dropout2 = nn.Dropout(dropout)
64
-
65
- def forward(self, x, attention_mask=None):
66
- attn_input = self.norm1(x)
67
- attn_output = self.attention(attn_input, attention_mask)
68
- x = x + self.dropout1(attn_output)
69
- ff_input = self.norm2(x)
70
- ff_output = self.feed_forward(ff_input)
71
- x = x + self.dropout2(ff_output)
72
- return x
73
-
74
-
75
- class Snowflake4CausalLM(nn.Module):
76
- def __init__(self, vocab_size, max_seq_length, d_model, num_heads, num_layers, ff_dim, dropout=0.1):
77
- super().__init__()
78
- self.embedding = nn.Embedding(vocab_size, d_model)
79
- self.pos_encoding = nn.Parameter(torch.zeros(1, max_seq_length, d_model))
80
- position = torch.arange(max_seq_length).unsqueeze(1).float()
81
- div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
82
- pos_enc = torch.zeros(1, max_seq_length, d_model)
83
- pos_enc[0, :, 0::2] = torch.sin(position * div_term)
84
- pos_enc[0, :, 1::2] = torch.cos(position * div_term)
85
- self.pos_encoding.data = pos_enc.data
86
- self.layers = nn.ModuleList([
87
- EnhancedTransformerBlock(d_model, num_heads, ff_dim, dropout)
88
- for _ in range(num_layers)
89
- ])
90
- self.final_norm = nn.LayerNorm(d_model, eps=1e-6)
91
- self.dropout = nn.Dropout(dropout)
92
- self.fc_out = nn.Linear(d_model, vocab_size)
93
- self.fc_out.weight = self.embedding.weight
94
- nn.init.normal_(self.embedding.weight, mean=0, std=0.02)
95
-
96
- def forward(self, input_ids, attention_mask=None):
97
- seq_length = input_ids.size(1)
98
- x = self.embedding(input_ids) + self.pos_encoding[:, :seq_length, :]
99
- x = self.dropout(x)
100
- for layer in self.layers:
101
- x = layer(x, attention_mask)
102
- x = self.final_norm(x)
103
- return self.fc_out(x)
104
-
105
-
106
- # --- Load Model and Tokenizer ---
107
- MODEL_PATH = "model.safetensors"
108
- CONFIG_PATH = "config.json"
109
- TOKENIZER_PATH = "tokenizer"
110
-
111
- # Load configuration
112
- config = AutoConfig.from_pretrained(CONFIG_PATH)
113
 
114
  # Load tokenizer
115
- tokenizer = PreTrainedTokenizerFast.from_pretrained(TOKENIZER_PATH)
116
 
117
- # Initialize the custom model
118
- model = Snowflake4CausalLM(
119
- vocab_size=config.vocab_size,
120
- max_seq_length=config.max_position_embeddings,
121
- d_model=config.hidden_size,
122
- num_heads=config.num_attention_heads,
123
- num_layers=config.num_hidden_layers,
124
- ff_dim=config.intermediate_size,
125
- dropout=0.1
126
  )
127
-
128
- # Load the model weights from safetensors
129
- state_dict = load_model(MODEL_PATH)
130
- model.load_state_dict(state_dict)
131
  model.eval()
132
  model.to("cuda" if torch.cuda.is_available() else "cpu")
133
 
134
-
135
  # --- Inference Function ---
136
  def generate_text(prompt, max_length=50):
 
 
 
 
137
  inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True, max_length=384)
138
  input_ids = inputs["input_ids"].to(model.device)
139
  attention_mask = inputs["attention_mask"].to(model.device)
140
 
 
141
  with torch.no_grad():
142
- outputs = model(input_ids, attention_mask)
143
- logits = outputs[:, -1, :]
144
- next_token = torch.argmax(logits, dim=-1)
145
-
146
- generated_text = tokenizer.decode(next_token, skip_special_tokens=True)
 
 
 
 
147
  return generated_text
148
 
149
-
150
  # --- Gradio Interface ---
151
  with gr.Blocks() as demo:
152
  gr.Markdown("# Snowflake-G0-stable Language Model")
@@ -163,4 +55,5 @@ with gr.Blocks() as demo:
163
 
164
  submit_button.click(on_submit, inputs=input_prompt, outputs=output_text)
165
 
 
166
  demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
 
3
  import torch
 
 
4
 
5
+ # --- Load Model and Tokenizer from Hugging Face Hub ---
6
+ MODEL_NAME = "FlameF0X/Snowflake-G0-stable"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
  # Load tokenizer
9
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
10
 
11
+ # Load model
12
+ model = AutoModelForCausalLM.from_pretrained(
13
+ MODEL_NAME,
14
+ torch_dtype=torch.float16 # Use half precision for memory efficiency
 
 
 
 
 
15
  )
 
 
 
 
16
  model.eval()
17
  model.to("cuda" if torch.cuda.is_available() else "cpu")
18
 
 
19
  # --- Inference Function ---
20
  def generate_text(prompt, max_length=50):
21
+ """
22
+ Generate text based on the input prompt using the trained model.
23
+ """
24
+ # Tokenize the input prompt
25
  inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True, max_length=384)
26
  input_ids = inputs["input_ids"].to(model.device)
27
  attention_mask = inputs["attention_mask"].to(model.device)
28
 
29
+ # Generate output tokens
30
  with torch.no_grad():
31
+ outputs = model.generate(
32
+ input_ids=input_ids,
33
+ attention_mask=attention_mask,
34
+ max_length=max_length,
35
+ pad_token_id=tokenizer.eos_token_id # Use EOS token for padding
36
+ )
37
+
38
+ # Decode the generated tokens
39
+ generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
40
  return generated_text
41
 
 
42
  # --- Gradio Interface ---
43
  with gr.Blocks() as demo:
44
  gr.Markdown("# Snowflake-G0-stable Language Model")
 
55
 
56
  submit_button.click(on_submit, inputs=input_prompt, outputs=output_text)
57
 
58
+ # Launch the app
59
  demo.launch()