Update app.py
Browse files
app.py
CHANGED
@@ -1,310 +1,53 @@
|
|
1 |
import os
|
2 |
-
import
|
3 |
-
import
|
4 |
-
|
5 |
-
import
|
6 |
-
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
.
|
26 |
-
background-color: #1e1e2f !important;
|
27 |
-
color: #e0e0e0 !important;
|
28 |
-
}
|
29 |
-
.header {
|
30 |
-
background-color: #2b2b3c;
|
31 |
-
padding: 20px;
|
32 |
-
margin-bottom: 20px;
|
33 |
-
border-radius: 10px;
|
34 |
-
text-align: center;
|
35 |
-
}
|
36 |
-
.header h1 {
|
37 |
-
color: #66ccff;
|
38 |
-
margin-bottom: 10px;
|
39 |
-
}
|
40 |
-
.snowflake-icon {
|
41 |
-
font-size: 24px;
|
42 |
-
margin-right: 10px;
|
43 |
-
}
|
44 |
-
.footer {
|
45 |
-
text-align: center;
|
46 |
-
margin-top: 20px;
|
47 |
-
font-size: 0.9em;
|
48 |
-
color: #999;
|
49 |
-
}
|
50 |
-
.parameter-section {
|
51 |
-
background-color: #2a2a3a;
|
52 |
-
padding: 15px;
|
53 |
-
border-radius: 8px;
|
54 |
-
margin-bottom: 15px;
|
55 |
-
}
|
56 |
-
.parameter-section h3 {
|
57 |
-
margin-top: 0;
|
58 |
-
color: #66ccff;
|
59 |
-
}
|
60 |
-
.example-section {
|
61 |
-
background-color: #223344;
|
62 |
-
padding: 15px;
|
63 |
-
border-radius: 8px;
|
64 |
-
margin-bottom: 15px;
|
65 |
-
}
|
66 |
-
.example-section h3 {
|
67 |
-
margin-top: 0;
|
68 |
-
color: #66ffaa;
|
69 |
-
}
|
70 |
-
"""
|
71 |
-
|
72 |
-
# Helper function to load model and tokenizer
|
73 |
-
def load_model_and_tokenizer():
|
74 |
-
global model, tokenizer, pipeline
|
75 |
-
|
76 |
-
print("Loading Snowflake-G0-Release model and tokenizer...")
|
77 |
-
|
78 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
79 |
-
|
80 |
-
if tokenizer.pad_token is None:
|
81 |
-
tokenizer.pad_token = tokenizer.eos_token
|
82 |
-
|
83 |
-
model = AutoModelForCausalLM.from_pretrained(
|
84 |
-
MODEL_ID,
|
85 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
86 |
-
device_map="auto"
|
87 |
-
)
|
88 |
-
|
89 |
-
pipeline = TextGenerationPipeline(
|
90 |
-
model=model,
|
91 |
-
tokenizer=tokenizer,
|
92 |
-
return_full_text=False,
|
93 |
-
max_length=MAX_LENGTH
|
94 |
-
)
|
95 |
-
|
96 |
-
print("Model loaded successfully!")
|
97 |
-
return model, tokenizer, pipeline
|
98 |
-
|
99 |
-
# Helper functions for generation
|
100 |
-
def generate_text(
|
101 |
-
prompt,
|
102 |
-
temperature=TEMPERATURE_DEFAULT,
|
103 |
-
top_p=TOP_P_DEFAULT,
|
104 |
-
top_k=TOP_K_DEFAULT,
|
105 |
-
max_new_tokens=MAX_NEW_TOKENS_DEFAULT,
|
106 |
-
history=None
|
107 |
-
):
|
108 |
-
if history is None:
|
109 |
-
history = []
|
110 |
-
|
111 |
-
history.append({"role": "user", "content": prompt})
|
112 |
-
|
113 |
-
try:
|
114 |
-
outputs = pipeline(
|
115 |
-
prompt,
|
116 |
-
do_sample=temperature > 0,
|
117 |
-
temperature=temperature,
|
118 |
-
top_p=top_p,
|
119 |
-
top_k=top_k,
|
120 |
-
max_new_tokens=max_new_tokens,
|
121 |
-
pad_token_id=tokenizer.pad_token_id,
|
122 |
-
num_return_sequences=1
|
123 |
-
)
|
124 |
-
|
125 |
-
response = outputs[0]["generated_text"]
|
126 |
-
history.append({"role": "assistant", "content": response})
|
127 |
-
|
128 |
-
formatted_history = []
|
129 |
-
for entry in history:
|
130 |
-
role_prefix = "👤 User: " if entry["role"] == "user" else "❄️ Snowflake: "
|
131 |
-
formatted_history.append(f"{role_prefix}{entry['content']}")
|
132 |
-
|
133 |
-
return response, history, "\n\n".join(formatted_history)
|
134 |
-
|
135 |
-
except Exception as e:
|
136 |
-
error_msg = f"Error generating response: {str(e)}"
|
137 |
-
history.append({"role": "assistant", "content": f"[ERROR] {error_msg}"})
|
138 |
-
return error_msg, history, str(history)
|
139 |
-
|
140 |
-
def clear_conversation():
|
141 |
-
return "", [], ""
|
142 |
-
|
143 |
-
def apply_preset_example(example, history):
|
144 |
-
return example, history
|
145 |
-
|
146 |
-
# Example prompts
|
147 |
-
examples = [
|
148 |
-
"Write a short story about a snowflake that comes to life.",
|
149 |
-
"Explain the concept of artificial neural networks to a 10-year-old.",
|
150 |
-
"What are some interesting applications of natural language processing?",
|
151 |
-
"Write a haiku about programming.",
|
152 |
-
"Create a dialogue between two AI researchers discussing the future of language models."
|
153 |
-
]
|
154 |
-
|
155 |
-
# Main app creation
|
156 |
-
def create_demo():
|
157 |
-
with gr.Blocks(css=css) as demo:
|
158 |
-
# Header
|
159 |
-
gr.HTML("""
|
160 |
-
<div class="header">
|
161 |
-
<h1><span class="snowflake-icon">❄️</span> Snowflake-G0-Release Demo</h1>
|
162 |
-
<p>Experience the capabilities of the Snowflake-G0-Release language model</p>
|
163 |
-
</div>
|
164 |
-
""")
|
165 |
-
|
166 |
-
# About accordion
|
167 |
-
with gr.Accordion("About Snowflake-G0-Release", open=False):
|
168 |
-
gr.Markdown("""
|
169 |
-
## Snowflake-G0-Release
|
170 |
-
|
171 |
-
Initial release of the Snowflake series trained on DialogMLM-50K.
|
172 |
-
|
173 |
-
### Model Details
|
174 |
-
- Architecture: SnowflakeCore
|
175 |
-
- Hidden size: 384
|
176 |
-
- Attention heads: 6
|
177 |
-
- Layers: 4
|
178 |
-
- Feed-forward dim: 768
|
179 |
-
- Max seq length: 384
|
180 |
-
- Vocabulary size: 30522 (BERT tokenizer)
|
181 |
-
|
182 |
-
### Features
|
183 |
-
- Memory-efficient
|
184 |
-
- Fused QKV for faster inference
|
185 |
-
- Pre-norm for stability
|
186 |
-
- Hugging Face compatible
|
187 |
-
""")
|
188 |
-
|
189 |
-
# Chat interface
|
190 |
-
with gr.Column():
|
191 |
-
chat_history_display = gr.Textbox(
|
192 |
-
value="",
|
193 |
-
label="Conversation History",
|
194 |
-
lines=10,
|
195 |
-
max_lines=30,
|
196 |
-
interactive=False
|
197 |
-
)
|
198 |
-
history_state = gr.State([])
|
199 |
-
|
200 |
-
with gr.Row():
|
201 |
-
with gr.Column(scale=4):
|
202 |
-
prompt = gr.Textbox(
|
203 |
-
placeholder="Type your message here...",
|
204 |
-
label="Your Input",
|
205 |
-
lines=2
|
206 |
-
)
|
207 |
-
with gr.Column(scale=1):
|
208 |
-
submit_btn = gr.Button("Send", variant="primary")
|
209 |
-
clear_btn = gr.Button("Clear Conversation")
|
210 |
-
|
211 |
-
response_output = gr.Textbox(
|
212 |
-
value="",
|
213 |
-
label="Model Response",
|
214 |
-
lines=5,
|
215 |
-
max_lines=10,
|
216 |
-
interactive=False
|
217 |
-
)
|
218 |
-
|
219 |
-
# Generation Parameters
|
220 |
-
with gr.Accordion("Generation Parameters", open=False):
|
221 |
-
with gr.Column(elem_classes="parameter-section"):
|
222 |
-
with gr.Row():
|
223 |
-
with gr.Column():
|
224 |
-
temperature = gr.Slider(
|
225 |
-
minimum=TEMPERATURE_MIN,
|
226 |
-
maximum=TEMPERATURE_MAX,
|
227 |
-
value=TEMPERATURE_DEFAULT,
|
228 |
-
step=0.05,
|
229 |
-
label="Temperature"
|
230 |
-
)
|
231 |
-
top_p = gr.Slider(
|
232 |
-
minimum=TOP_P_MIN,
|
233 |
-
maximum=TOP_P_MAX,
|
234 |
-
value=TOP_P_DEFAULT,
|
235 |
-
step=0.05,
|
236 |
-
label="Top-p (nucleus sampling)"
|
237 |
-
)
|
238 |
-
with gr.Column():
|
239 |
-
top_k = gr.Slider(
|
240 |
-
minimum=TOP_K_MIN,
|
241 |
-
maximum=TOP_K_MAX,
|
242 |
-
value=TOP_K_DEFAULT,
|
243 |
-
step=1,
|
244 |
-
label="Top-k"
|
245 |
-
)
|
246 |
-
max_new_tokens = gr.Slider(
|
247 |
-
minimum=MAX_NEW_TOKENS_MIN,
|
248 |
-
maximum=MAX_NEW_TOKENS_MAX,
|
249 |
-
value=MAX_NEW_TOKENS_DEFAULT,
|
250 |
-
step=8,
|
251 |
-
label="Maximum New Tokens"
|
252 |
-
)
|
253 |
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
inputs=prompt,
|
260 |
-
label="Click an example to try",
|
261 |
-
examples_per_page=5
|
262 |
-
)
|
263 |
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
<p>Snowflake-G0-Release Demo • Created with Gradio • {datetime.datetime.now().year}</p>
|
268 |
-
</div>
|
269 |
-
""")
|
270 |
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
inputs=[prompt, temperature, top_p, top_k, max_new_tokens, history_state],
|
275 |
-
outputs=[response_output, history_state, chat_history_display]
|
276 |
-
)
|
277 |
|
278 |
-
|
279 |
-
|
280 |
-
inputs=[prompt, temperature, top_p, top_k, max_new_tokens, history_state],
|
281 |
-
outputs=[response_output, history_state, chat_history_display]
|
282 |
-
)
|
283 |
|
284 |
-
|
285 |
-
|
286 |
-
inputs=[],
|
287 |
-
outputs=[prompt, history_state, chat_history_display]
|
288 |
-
)
|
289 |
|
290 |
-
|
291 |
|
292 |
-
#
|
293 |
-
|
294 |
-
|
295 |
-
except Exception as e:
|
296 |
-
print(f"Error loading model: {str(e)}")
|
297 |
-
with gr.Blocks(css=css) as error_demo:
|
298 |
-
gr.HTML(f"""
|
299 |
-
<div class="header" style="background-color: #ffebee;">
|
300 |
-
<h1><span class="snowflake-icon">⚠️</span> Error Loading Model</h1>
|
301 |
-
<p>There was a problem loading the model: {str(e)}</p>
|
302 |
-
</div>
|
303 |
-
""")
|
304 |
-
demo = error_demo
|
305 |
-
else:
|
306 |
-
demo = create_demo()
|
307 |
|
308 |
-
|
309 |
-
if __name__ == "__main__":
|
310 |
-
demo.launch()
|
|
|
1 |
import os
|
2 |
+
import json
|
3 |
+
from safetensors.torch import load_file, save_file
|
4 |
+
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
+
|
7 |
+
# Path to your model folder
|
8 |
+
model_dir = "./model"
|
9 |
+
|
10 |
+
# Step 1: Fix config.json if missing model_type
|
11 |
+
config_path = os.path.join(model_dir, "config.json")
|
12 |
+
if os.path.exists(config_path):
|
13 |
+
with open(config_path, "r") as f:
|
14 |
+
config = json.load(f)
|
15 |
+
|
16 |
+
if "model_type" not in config:
|
17 |
+
print("⚙️ Adding missing 'model_type' to config.json...")
|
18 |
+
# You can adjust 'gpt2' to whatever your real model type is
|
19 |
+
config["model_type"] = "gpt2"
|
20 |
+
with open(config_path, "w") as f:
|
21 |
+
json.dump(config, f, indent=2)
|
22 |
+
else:
|
23 |
+
print("✅ 'model_type' already exists in config.json.")
|
24 |
+
else:
|
25 |
+
raise FileNotFoundError("config.json not found in model directory!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
# Step 2: Fix .safetensors file metadata
|
28 |
+
safetensors_files = [f for f in os.listdir(model_dir) if f.endswith(".safetensors")]
|
29 |
+
if safetensors_files:
|
30 |
+
safetensors_path = os.path.join(model_dir, safetensors_files[0])
|
31 |
+
print(f"🛠 Fixing metadata in: {safetensors_path}")
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
state_dict = load_file(safetensors_path)
|
34 |
+
fixed_path = os.path.join(model_dir, "model_fixed.safetensors")
|
35 |
+
save_file(state_dict, fixed_path, metadata={"format": "pt"})
|
|
|
|
|
|
|
36 |
|
37 |
+
print(f"✅ Saved fixed safetensors: {fixed_path}")
|
38 |
+
else:
|
39 |
+
print("⚠️ No .safetensors file found to fix.")
|
|
|
|
|
|
|
40 |
|
41 |
+
# Step 3: Load model to verify it works now
|
42 |
+
print("🚀 Trying to load the model...")
|
|
|
|
|
|
|
43 |
|
44 |
+
model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=True)
|
45 |
+
tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
|
|
|
|
|
|
46 |
|
47 |
+
print("🎉 Model loaded successfully!")
|
48 |
|
49 |
+
# Step 4 (optional): Save model again safely
|
50 |
+
model.save_pretrained(model_dir, safe_serialization=True)
|
51 |
+
tokenizer.save_pretrained(model_dir)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
print("✅ Model and tokenizer saved safely with correct format!")
|
|
|
|