Create modeling_snowflake.py
Browse files- modeling_snowflake.py +112 -0
modeling_snowflake.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import math
|
4 |
+
|
5 |
+
# --- Submodule: FusedQKVAttention ---
|
6 |
+
class FusedQKVAttention(nn.Module):
|
7 |
+
def __init__(self, d_model, num_heads):
|
8 |
+
super().__init__()
|
9 |
+
self.d_model = d_model
|
10 |
+
self.num_heads = num_heads
|
11 |
+
self.head_dim = d_model // num_heads
|
12 |
+
# Fused QKV projection
|
13 |
+
self.qkv_proj = nn.Linear(d_model, 3 * d_model)
|
14 |
+
self.wo = nn.Linear(d_model, d_model)
|
15 |
+
# Initialize weights for better training stability
|
16 |
+
nn.init.xavier_uniform_(self.qkv_proj.weight)
|
17 |
+
nn.init.xavier_uniform_(self.wo.weight)
|
18 |
+
nn.init.zeros_(self.qkv_proj.bias)
|
19 |
+
nn.init.zeros_(self.wo.bias)
|
20 |
+
|
21 |
+
def forward(self, x, attention_mask=None):
|
22 |
+
batch_size, seq_len, _ = x.shape
|
23 |
+
# Fused projection and reshape
|
24 |
+
qkv = self.qkv_proj(x).reshape(batch_size, seq_len, 3, self.num_heads, self.head_dim)
|
25 |
+
qkv = qkv.permute(2, 0, 3, 1, 4) # [3, batch, heads, seq_len, head_dim]
|
26 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
27 |
+
# Compute attention with memory efficiency
|
28 |
+
attention_scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim)
|
29 |
+
if attention_mask is not None:
|
30 |
+
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
31 |
+
attention_scores = attention_scores.masked_fill(attention_mask == 0, float('-inf'))
|
32 |
+
attention_weights = torch.softmax(attention_scores, dim=-1)
|
33 |
+
# Apply attention and reshape
|
34 |
+
context = torch.matmul(attention_weights, v)
|
35 |
+
context = context.transpose(1, 2).reshape(batch_size, seq_len, self.d_model)
|
36 |
+
return self.wo(context)
|
37 |
+
|
38 |
+
|
39 |
+
# --- Submodule: EnhancedFeedForward ---
|
40 |
+
class EnhancedFeedForward(nn.Module):
|
41 |
+
def __init__(self, d_model, ff_dim, dropout=0.1):
|
42 |
+
super().__init__()
|
43 |
+
self.linear1 = nn.Linear(d_model, ff_dim)
|
44 |
+
self.dropout1 = nn.Dropout(dropout)
|
45 |
+
self.linear2 = nn.Linear(ff_dim, d_model)
|
46 |
+
self.dropout2 = nn.Dropout(dropout)
|
47 |
+
self.activation = nn.GELU()
|
48 |
+
# Initialize weights for better training
|
49 |
+
nn.init.xavier_uniform_(self.linear1.weight)
|
50 |
+
nn.init.xavier_uniform_(self.linear2.weight)
|
51 |
+
nn.init.zeros_(self.linear1.bias)
|
52 |
+
nn.init.zeros_(self.linear2.bias)
|
53 |
+
|
54 |
+
def forward(self, x):
|
55 |
+
return self.dropout2(self.linear2(self.dropout1(self.activation(self.linear1(x)))))
|
56 |
+
|
57 |
+
|
58 |
+
# --- Submodule: EnhancedTransformerBlock ---
|
59 |
+
class EnhancedTransformerBlock(nn.Module):
|
60 |
+
def __init__(self, d_model, num_heads, ff_dim, dropout=0.1):
|
61 |
+
super().__init__()
|
62 |
+
self.attention = FusedQKVAttention(d_model, num_heads)
|
63 |
+
self.norm1 = nn.LayerNorm(d_model, eps=1e-6)
|
64 |
+
self.dropout1 = nn.Dropout(dropout)
|
65 |
+
self.feed_forward = EnhancedFeedForward(d_model, ff_dim, dropout)
|
66 |
+
self.norm2 = nn.LayerNorm(d_model, eps=1e-6)
|
67 |
+
self.dropout2 = nn.Dropout(dropout)
|
68 |
+
|
69 |
+
def forward(self, x, attention_mask=None):
|
70 |
+
# Pre-norm architecture
|
71 |
+
attn_input = self.norm1(x)
|
72 |
+
attn_output = self.attention(attn_input, attention_mask)
|
73 |
+
x = x + self.dropout1(attn_output)
|
74 |
+
ff_input = self.norm2(x)
|
75 |
+
ff_output = self.feed_forward(ff_input)
|
76 |
+
x = x + self.dropout2(ff_output)
|
77 |
+
return x
|
78 |
+
|
79 |
+
|
80 |
+
# --- Main Model Class: Snowflake4CausalLM ---
|
81 |
+
class Snowflake4CausalLM(nn.Module):
|
82 |
+
def __init__(self, vocab_size, max_seq_length, d_model, num_heads, num_layers, ff_dim, dropout=0.1):
|
83 |
+
super().__init__()
|
84 |
+
self.embedding = nn.Embedding(vocab_size, d_model)
|
85 |
+
# Initialize positional encodings without in-place modification
|
86 |
+
self.pos_encoding = nn.Parameter(torch.zeros(1, max_seq_length, d_model))
|
87 |
+
position = torch.arange(max_seq_length).unsqueeze(1).float()
|
88 |
+
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
|
89 |
+
pos_enc = torch.zeros(1, max_seq_length, d_model)
|
90 |
+
pos_enc[0, :, 0::2] = torch.sin(position * div_term)
|
91 |
+
pos_enc[0, :, 1::2] = torch.cos(position * div_term)
|
92 |
+
self.pos_encoding.data = pos_enc.data
|
93 |
+
self.layers = nn.ModuleList([
|
94 |
+
EnhancedTransformerBlock(d_model, num_heads, ff_dim, dropout)
|
95 |
+
for _ in range(num_layers)
|
96 |
+
])
|
97 |
+
self.final_norm = nn.LayerNorm(d_model, eps=1e-6)
|
98 |
+
self.dropout = nn.Dropout(dropout)
|
99 |
+
self.fc_out = nn.Linear(d_model, vocab_size)
|
100 |
+
# Tie embedding and output weights for memory efficiency and better generalization
|
101 |
+
self.fc_out.weight = self.embedding.weight
|
102 |
+
# Initialize embedding weights
|
103 |
+
nn.init.normal_(self.embedding.weight, mean=0, std=0.02)
|
104 |
+
|
105 |
+
def forward(self, input_ids, attention_mask=None):
|
106 |
+
seq_length = input_ids.size(1)
|
107 |
+
x = self.embedding(input_ids) + self.pos_encoding[:, :seq_length, :]
|
108 |
+
x = self.dropout(x)
|
109 |
+
for layer in self.layers:
|
110 |
+
x = layer(x, attention_mask)
|
111 |
+
x = self.final_norm(x)
|
112 |
+
return self.fc_out(x)
|