Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import PreTrainedTokenizerFast, AutoConfig
|
3 |
+
from safetensors.torch import load_model # Import load_model for safetensors
|
4 |
+
import torch
|
5 |
+
from EnhancedTransformerModel import EnhancedTransformerModel # Custom model class
|
6 |
+
|
7 |
+
# --- Load Model and Tokenizer ---
|
8 |
+
MODEL_PATH = "model.safetensors" # Path to the safetensors model file
|
9 |
+
CONFIG_PATH = "config.json" # Path to the model configuration
|
10 |
+
TOKENIZER_PATH = "tokenizer" # Path to the tokenizer directory
|
11 |
+
|
12 |
+
# Load configuration
|
13 |
+
config = AutoConfig.from_pretrained(CONFIG_PATH)
|
14 |
+
|
15 |
+
# Load tokenizer
|
16 |
+
tokenizer = PreTrainedTokenizerFast.from_pretrained(TOKENIZER_PATH)
|
17 |
+
|
18 |
+
# Initialize the custom model
|
19 |
+
model = EnhancedTransformerModel(
|
20 |
+
vocab_size=config.vocab_size,
|
21 |
+
max_seq_length=config.max_position_embeddings,
|
22 |
+
d_model=config.hidden_size,
|
23 |
+
num_heads=config.num_attention_heads,
|
24 |
+
num_layers=config.num_hidden_layers,
|
25 |
+
ff_dim=config.intermediate_size,
|
26 |
+
dropout=0.1
|
27 |
+
)
|
28 |
+
|
29 |
+
# Load the model weights from safetensors
|
30 |
+
state_dict = load_model(MODEL_PATH)
|
31 |
+
model.load_state_dict(state_dict)
|
32 |
+
model.eval()
|
33 |
+
model.to("cuda" if torch.cuda.is_available() else "cpu")
|
34 |
+
|
35 |
+
# --- Inference Function ---
|
36 |
+
def generate_text(prompt, max_length=50):
|
37 |
+
"""
|
38 |
+
Generate text based on the input prompt using the trained model.
|
39 |
+
"""
|
40 |
+
# Tokenize the input prompt
|
41 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True, max_length=384)
|
42 |
+
input_ids = inputs["input_ids"].to(model.device)
|
43 |
+
attention_mask = inputs["attention_mask"].to(model.device)
|
44 |
+
|
45 |
+
# Generate output tokens
|
46 |
+
with torch.no_grad():
|
47 |
+
outputs = model(input_ids, attention_mask)
|
48 |
+
logits = outputs[:, -1, :] # Get the logits for the last token
|
49 |
+
next_token = torch.argmax(logits, dim=-1) # Greedy decoding
|
50 |
+
|
51 |
+
# Decode the generated token
|
52 |
+
generated_text = tokenizer.decode(next_token, skip_special_tokens=True)
|
53 |
+
return generated_text
|
54 |
+
|
55 |
+
# --- Gradio Interface ---
|
56 |
+
with gr.Blocks() as demo:
|
57 |
+
gr.Markdown("# Snowflake-G0-stable Language Model")
|
58 |
+
gr.Markdown("This is an enhanced transformer language model trained on the DialogMLM-50K dataset. Try it out below!")
|
59 |
+
|
60 |
+
with gr.Row():
|
61 |
+
input_prompt = gr.Textbox(label="Input Prompt", placeholder="Enter your text here...")
|
62 |
+
output_text = gr.Textbox(label="Generated Text")
|
63 |
+
|
64 |
+
submit_button = gr.Button("Generate")
|
65 |
+
|
66 |
+
def on_submit(prompt):
|
67 |
+
return generate_text(prompt)
|
68 |
+
|
69 |
+
submit_button.click(on_submit, inputs=input_prompt, outputs=output_text)
|
70 |
+
|
71 |
+
# Launch the app
|
72 |
+
demo.launch()
|