|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
from modeling_snowflake import Snowflake4CausalLM |
|
import torch |
|
|
|
|
|
MODEL_NAME = "FlameF0X/Snowflake-G0-stable" |
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
MODEL_NAME, |
|
torch_dtype=torch.float16 |
|
) |
|
model.eval() |
|
model.to("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
def generate_text(prompt, max_length=50): |
|
""" |
|
Generate text based on the input prompt using the trained model. |
|
""" |
|
|
|
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True, max_length=384) |
|
input_ids = inputs["input_ids"].to(model.device) |
|
attention_mask = inputs["attention_mask"].to(model.device) |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
max_length=max_length, |
|
pad_token_id=tokenizer.eos_token_id |
|
) |
|
|
|
|
|
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return generated_text |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Snowflake-G0-stable Language Model") |
|
gr.Markdown("This is an enhanced transformer language model trained on the DialogMLM-50K dataset. Try it out below!") |
|
|
|
with gr.Row(): |
|
input_prompt = gr.Textbox(label="Input Prompt", placeholder="Enter your text here...") |
|
output_text = gr.Textbox(label="Generated Text") |
|
|
|
submit_button = gr.Button("Generate") |
|
|
|
def on_submit(prompt): |
|
return generate_text(prompt) |
|
|
|
submit_button.click(on_submit, inputs=input_prompt, outputs=output_text) |
|
|
|
|
|
demo.launch() |