FlameF0X's picture
Update app.py
54d174a verified
raw
history blame
10.4 kB
import os
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import datetime
model = SnowflakeCore.from_pretrained("FlameF0X/Snowflake-GO-Release")
# Model Constants
MODEL_ID = "FlameF0X/Snowflake-G0-Release" # Replace with actual HF repo when published
MAX_LENGTH = 384
TEMPERATURE_MIN = 0.1
TEMPERATURE_MAX = 2.0
TEMPERATURE_DEFAULT = 0.7
TOP_P_MIN = 0.1
TOP_P_MAX = 1.0
TOP_P_DEFAULT = 0.9
TOP_K_MIN = 1
TOP_K_MAX = 100
TOP_K_DEFAULT = 40
MAX_NEW_TOKENS_MIN = 16
MAX_NEW_TOKENS_MAX = 1024
MAX_NEW_TOKENS_DEFAULT = 256
# CSS for the app
css = """
.gradio-container {
background-color: #1e1e2f !important;
color: #e0e0e0 !important;
}
.header {
background-color: #2b2b3c;
padding: 20px;
margin-bottom: 20px;
border-radius: 10px;
text-align: center;
}
.header h1 {
color: #66ccff;
margin-bottom: 10px;
}
.snowflake-icon {
font-size: 24px;
margin-right: 10px;
}
.footer {
text-align: center;
margin-top: 20px;
font-size: 0.9em;
color: #999;
}
.parameter-section {
background-color: #2a2a3a;
padding: 15px;
border-radius: 8px;
margin-bottom: 15px;
}
.parameter-section h3 {
margin-top: 0;
color: #66ccff;
}
.example-section {
background-color: #223344;
padding: 15px;
border-radius: 8px;
margin-bottom: 15px;
}
.example-section h3 {
margin-top: 0;
color: #66ffaa;
}
"""
# Helper functions
def load_model_and_tokenizer():
global model, tokenizer, pipeline # Add this line
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto"
)
pipeline = TextGenerationPipeline(
model=model,
tokenizer=tokenizer,
return_full_text=False,
max_length=MAX_LENGTH
)
return model, tokenizer, pipeline
def generate_text(
prompt,
temperature=TEMPERATURE_DEFAULT,
top_p=TOP_P_DEFAULT,
top_k=TOP_K_DEFAULT,
max_new_tokens=MAX_NEW_TOKENS_DEFAULT,
history=None
):
if history is None:
history = []
# Add current prompt to history
history.append({"role": "user", "content": prompt})
try:
# Generate response
outputs = pipeline(
prompt,
do_sample=temperature > 0,
temperature=temperature,
top_p=top_p,
top_k=top_k,
max_new_tokens=max_new_tokens,
pad_token_id=tokenizer.pad_token_id,
num_return_sequences=1
)
response = outputs[0]["generated_text"]
# Add model response to history
history.append({"role": "assistant", "content": response})
# Format chat history for display
formatted_history = []
for entry in history:
role_prefix = "👤 User: " if entry["role"] == "user" else "❄️ Snowflake: "
formatted_history.append(f"{role_prefix}{entry['content']}")
return response, history, "\n\n".join(formatted_history)
except Exception as e:
error_msg = f"Error generating response: {str(e)}"
history.append({"role": "assistant", "content": f"[ERROR] {error_msg}"})
return error_msg, history, str(history)
def clear_conversation():
return "", [], ""
def apply_preset_example(example, history):
return example, history
# Example prompts
examples = [
"Write a short story about a snowflake that comes to life.",
"Explain the concept of artificial neural networks to a 10-year-old.",
"What are some interesting applications of natural language processing?",
"Write a haiku about programming.",
"Create a dialogue between two AI researchers discussing the future of language models."
]
# Main function
def create_demo():
with gr.Blocks(css=css) as demo:
# Header
gr.HTML("""
<div class="header">
<h1><span class="snowflake-icon">❄️</span> Snowflake-G0-Release Demo</h1>
<p>Experience the capabilities of the Snowflake-G0-Release language model</p>
</div>
""")
# Model info
with gr.Accordion("About Snowflake-G0-Release", open=False):
gr.Markdown("""
## Snowflake-G0-Release
This is the initial release of the Snowflake series language models, trained on the DialogMLM-50K dataset with optimized memory usage.
### Model details
- Architecture: SnowflakeCore
- Hidden size: 384
- Number of attention heads: 6
- Number of layers: 4
- Feed-forward dimension: 768
- Maximum sequence length: 384
- Vocabulary size: 30522 (BERT tokenizer)
### Key Features
- Efficient memory usage
- Fused QKV projection for faster inference
- Pre-norm architecture for stable training
- Compatible with HuggingFace Transformers
""")
# Chat interface
with gr.Column():
chat_history_display = gr.Textbox(
value="",
label="Conversation History",
lines=10,
max_lines=30,
interactive=False
)
# Invisible state variables
history_state = gr.State([])
# Input and output
with gr.Row():
with gr.Column(scale=4):
prompt = gr.Textbox(
placeholder="Type your message here...",
label="Your Input",
lines=2
)
with gr.Column(scale=1):
submit_btn = gr.Button("Send", variant="primary")
clear_btn = gr.Button("Clear Conversation")
response_output = gr.Textbox(
value="",
label="Model Response",
lines=5,
max_lines=10,
interactive=False
)
# Advanced parameters
with gr.Accordion("Generation Parameters", open=False):
with gr.Column(elem_classes="parameter-section"):
with gr.Row():
with gr.Column():
temperature = gr.Slider(
minimum=TEMPERATURE_MIN,
maximum=TEMPERATURE_MAX,
value=TEMPERATURE_DEFAULT,
step=0.05,
label="Temperature",
info="Higher = more creative, Lower = more deterministic"
)
top_p = gr.Slider(
minimum=TOP_P_MIN,
maximum=TOP_P_MAX,
value=TOP_P_DEFAULT,
step=0.05,
label="Top-p (nucleus sampling)",
info="Controls diversity via cumulative probability"
)
with gr.Column():
top_k = gr.Slider(
minimum=TOP_K_MIN,
maximum=TOP_K_MAX,
value=TOP_K_DEFAULT,
step=1,
label="Top-k",
info="Limits word choice to top k options"
)
max_new_tokens = gr.Slider(
minimum=MAX_NEW_TOKENS_MIN,
maximum=MAX_NEW_TOKENS_MAX,
value=MAX_NEW_TOKENS_DEFAULT,
step=8,
label="Maximum New Tokens",
info="Controls the length of generated response"
)
# Examples
with gr.Accordion("Example Prompts", open=True):
with gr.Column(elem_classes="example-section"):
example_btn = gr.Examples(
examples=examples,
inputs=prompt,
label="Click on an example to try it",
examples_per_page=5
)
# Footer
gr.HTML(f"""
<div class="footer">
<p>Snowflake-G0-Release Demo • Created with Gradio • {datetime.datetime.now().year}</p>
</div>
""")
# Set up interactions
submit_btn.click(
fn=generate_text,
inputs=[prompt, temperature, top_p, top_k, max_new_tokens, history_state],
outputs=[response_output, history_state, chat_history_display]
)
prompt.submit(
fn=generate_text,
inputs=[prompt, temperature, top_p, top_k, max_new_tokens, history_state],
outputs=[response_output, history_state, chat_history_display]
)
clear_btn.click(
fn=clear_conversation,
inputs=[],
outputs=[prompt, history_state, chat_history_display]
)
return demo
# Load model and tokenizer
print("Loading Snowflake-G0-Release model and tokenizer...")
try:
model, tokenizer, pipeline = load_model_and_tokenizer()
print("Model loaded successfully!")
except Exception as e:
print(f"Error loading model: {str(e)}")
# Create a simple error demo if model fails to load
with gr.Blocks(css=css) as error_demo:
gr.HTML(f"""
<div class="header" style="background-color: #ffebee;">
<h1><span class="snowflake-icon">⚠️</span> Error Loading Model</h1>
<p>There was a problem loading the Snowflake-G0-Release model: {str(e)}</p>
</div>
""")
demo = error_demo
# Create and launch the demo
demo = create_demo()
# Launch the app
if __name__ == "__main__":
demo.launch()