import os from huggingface_hub import login from transformers import BlipProcessor, BlipForConditionalGeneration from transformers import MllamaForConditionalGeneration, AutoProcessor from PIL import Image from dotenv import load_dotenv import gradio as gr from diffusers import DiffusionPipeline import torch import spaces # Hugging Face Spaces module import requests from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor from qwen_vl_utils import process_vision_info from diffusers import DiffusionPipeline fabrics = ['cotton', 'silk', 'denim', 'linen', 'polyester', 'wool', 'velvet'] patterns = ['striped', 'floral', 'geometric', 'abstract', 'solid', 'polka dots'] textile_designs = ['woven texture', 'embroidery', 'printed fabric', 'hand-dyed', 'quilting'] # Get Hugging Face Token from environment variable HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN") # Authenticate using the token login(token =HUGGINGFACE_TOKEN) processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large") processor1 = BlipProcessor.from_pretrained("noamrot/FuseCap") model2 = BlipForConditionalGeneration.from_pretrained("noamrot/FuseCap") from diffusers import FluxPipeline pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16) device = "cuda" if torch.cuda.is_available() else "cpu" # pipe.to(device) model.to(device) pipe.to(device) model2.to(device) @spaces.GPU(duration=150) def generate_caption_and_image(image, f, p, d): if f!=None and p!=None and d!=None and image!=None: img = image.convert("RGB") # reader = easyocr.Reader(['en']) # # result = reader.readtext(img) # import random text = "a picture of " inputs = processor(img, text, return_tensors="pt").to(device) out = model2.generate(**inputs, num_beams = 3) caption2 = processor1.decode(out[0], skip_special_tokens=True) inputs = processor(image, return_tensors="pt", padding=True, truncation=True, max_length=250) inputs = {key: val.to(device) for key, val in inputs.items()} out = model.generate(**inputs) caption1 = processor.decode(out[0], skip_special_tokens=True) prompt = f"Design a high-quality, stylish clothing item that flawlessly combines the essence of {caption1} and {caption2}. The design should emphasize the luxurious feel and practicality of {f} fabric, while integrating intricate {d} textual design elements. Incorporate {p} patterns that elevate the garment's aesthetic, ensuring a harmonious blend of textures and visuals. The final piece should be both sophisticated and innovative, reflecting modern trends while preserving timeless elegance. The design should be bold, wearable, and a true work of art." image = pipe(prompt,height=1024,width=1024,guidance_scale=3.5,num_inference_steps=50,max_sequence_length=512,generator=torch.Generator("cpu").manual_seed(0)).images[0] return image return None # Gradio UI iface = gr.Interface( fn=generate_caption_and_image, inputs=[gr.Image(type="pil", label="Upload Image"), gr.Radio(fabrics, label="Select Fabric"), gr.Radio(patterns, label="Select Pattern"), gr.Radio(textile_designs, label="Select Textile Design")], outputs=[gr.Image(label="Generated Design 1")], live=True ) iface.launch(share=True)