Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
import streamlit as st
|
2 |
import PyPDF2
|
3 |
-
from langchain.llms import HuggingFaceHub
|
4 |
import pptx
|
5 |
import os
|
|
|
6 |
from langchain.vectorstores.cassandra import Cassandra
|
7 |
from langchain.indexes.vectorstore import VectorStoreIndexWrapper
|
8 |
from langchain.embeddings import OpenAIEmbeddings
|
@@ -10,56 +10,75 @@ import cassio
|
|
10 |
from langchain.text_splitter import CharacterTextSplitter
|
11 |
from huggingface_hub import login
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
# Secure API keys (replace with environment variables in deployment)
|
20 |
ASTRA_DB_APPLICATION_TOKEN = os.getenv("ASTRA_DB_APPLICATION_TOKEN")
|
21 |
ASTRA_DB_ID = os.getenv("ASTRA_DB_ID")
|
22 |
HUGGINGFACE_API_KEY = os.getenv("HUGGINGFACE_API_KEY")
|
23 |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
# Initialize Astra DB connection
|
27 |
cassio.init(token=ASTRA_DB_APPLICATION_TOKEN, database_id=ASTRA_DB_ID)
|
28 |
|
29 |
# Initialize LLM & Embeddings
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
# Initialize vector store
|
34 |
astra_vector_store = Cassandra(embedding=embedding, table_name="qa_mini_demo")
|
35 |
|
|
|
36 |
def extract_text_from_pdf(uploaded_file):
|
37 |
"""Extract text from a PDF file."""
|
38 |
text = ""
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
44 |
return text
|
45 |
|
|
|
46 |
def extract_text_from_ppt(uploaded_file):
|
47 |
"""Extract text from a PowerPoint file."""
|
48 |
text = ""
|
49 |
-
|
50 |
-
|
51 |
-
for
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
54 |
return text
|
55 |
|
|
|
56 |
def main():
|
57 |
st.title("Chat with Documents")
|
58 |
|
59 |
uploaded_file = st.file_uploader("Upload a PDF or PPT file", type=["pdf", "pptx"])
|
60 |
extract_button = st.button("Extract Text")
|
61 |
-
|
62 |
extracted_text = ""
|
|
|
63 |
if extract_button and uploaded_file is not None:
|
64 |
if uploaded_file.name.endswith(".pdf"):
|
65 |
extracted_text = extract_text_from_pdf(uploaded_file)
|
@@ -70,18 +89,20 @@ def main():
|
|
70 |
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=800, chunk_overlap=200, length_function=len)
|
71 |
texts = text_splitter.split_text(extracted_text)
|
72 |
astra_vector_store.add_texts(texts)
|
|
|
73 |
|
74 |
# Ensure the vector store index is initialized properly
|
75 |
astra_vector_index = VectorStoreIndexWrapper(vectorstore=astra_vector_store)
|
76 |
|
77 |
query = st.text_input("Enter your query")
|
78 |
submit_query = st.button("Submit Query")
|
79 |
-
if submit_query:
|
80 |
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
83 |
|
84 |
-
st.write(f"Response: {value}")
|
85 |
|
86 |
if __name__ == "__main__":
|
87 |
main()
|
|
|
1 |
import streamlit as st
|
2 |
import PyPDF2
|
|
|
3 |
import pptx
|
4 |
import os
|
5 |
+
from langchain.llms import HuggingFaceHub
|
6 |
from langchain.vectorstores.cassandra import Cassandra
|
7 |
from langchain.indexes.vectorstore import VectorStoreIndexWrapper
|
8 |
from langchain.embeddings import OpenAIEmbeddings
|
|
|
10 |
from langchain.text_splitter import CharacterTextSplitter
|
11 |
from huggingface_hub import login
|
12 |
|
13 |
+
# Secure API keys (ensure they are set)
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
ASTRA_DB_APPLICATION_TOKEN = os.getenv("ASTRA_DB_APPLICATION_TOKEN")
|
15 |
ASTRA_DB_ID = os.getenv("ASTRA_DB_ID")
|
16 |
HUGGINGFACE_API_KEY = os.getenv("HUGGINGFACE_API_KEY")
|
17 |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
18 |
+
|
19 |
+
if not ASTRA_DB_APPLICATION_TOKEN or not ASTRA_DB_ID:
|
20 |
+
st.error("Astra DB credentials are missing. Set the environment variables.")
|
21 |
+
st.stop()
|
22 |
+
if not HUGGINGFACE_API_KEY:
|
23 |
+
st.error("Hugging Face API key is missing. Set the HUGGINGFACE_API_KEY environment variable.")
|
24 |
+
st.stop()
|
25 |
+
if not OPENAI_API_KEY:
|
26 |
+
st.error("OpenAI API key is missing. Set the OPENAI_API_KEY environment variable.")
|
27 |
+
st.stop()
|
28 |
|
29 |
# Initialize Astra DB connection
|
30 |
cassio.init(token=ASTRA_DB_APPLICATION_TOKEN, database_id=ASTRA_DB_ID)
|
31 |
|
32 |
# Initialize LLM & Embeddings
|
33 |
+
login(token=HUGGINGFACE_API_KEY)
|
34 |
+
|
35 |
+
hf_llm = HuggingFaceHub(
|
36 |
+
repo_id="google/flan-t5-large",
|
37 |
+
model_kwargs={"temperature": 0, "max_length": 64},
|
38 |
+
huggingfacehub_api_token=HUGGINGFACE_API_KEY
|
39 |
+
)
|
40 |
+
|
41 |
+
embedding = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY)
|
42 |
|
43 |
# Initialize vector store
|
44 |
astra_vector_store = Cassandra(embedding=embedding, table_name="qa_mini_demo")
|
45 |
|
46 |
+
|
47 |
def extract_text_from_pdf(uploaded_file):
|
48 |
"""Extract text from a PDF file."""
|
49 |
text = ""
|
50 |
+
try:
|
51 |
+
pdf_reader = PyPDF2.PdfReader(uploaded_file)
|
52 |
+
for page in pdf_reader.pages:
|
53 |
+
page_text = page.extract_text()
|
54 |
+
if page_text: # Avoid NoneType error
|
55 |
+
text += page_text + "\n"
|
56 |
+
except Exception as e:
|
57 |
+
st.error(f"Error reading PDF: {e}")
|
58 |
return text
|
59 |
|
60 |
+
|
61 |
def extract_text_from_ppt(uploaded_file):
|
62 |
"""Extract text from a PowerPoint file."""
|
63 |
text = ""
|
64 |
+
try:
|
65 |
+
presentation = pptx.Presentation(uploaded_file)
|
66 |
+
for slide in presentation.slides:
|
67 |
+
for shape in slide.shapes:
|
68 |
+
if hasattr(shape, "text"):
|
69 |
+
text += shape.text + "\n"
|
70 |
+
except Exception as e:
|
71 |
+
st.error(f"Error reading PPT: {e}")
|
72 |
return text
|
73 |
|
74 |
+
|
75 |
def main():
|
76 |
st.title("Chat with Documents")
|
77 |
|
78 |
uploaded_file = st.file_uploader("Upload a PDF or PPT file", type=["pdf", "pptx"])
|
79 |
extract_button = st.button("Extract Text")
|
|
|
80 |
extracted_text = ""
|
81 |
+
|
82 |
if extract_button and uploaded_file is not None:
|
83 |
if uploaded_file.name.endswith(".pdf"):
|
84 |
extracted_text = extract_text_from_pdf(uploaded_file)
|
|
|
89 |
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=800, chunk_overlap=200, length_function=len)
|
90 |
texts = text_splitter.split_text(extracted_text)
|
91 |
astra_vector_store.add_texts(texts)
|
92 |
+
st.success("Text extracted and stored successfully!")
|
93 |
|
94 |
# Ensure the vector store index is initialized properly
|
95 |
astra_vector_index = VectorStoreIndexWrapper(vectorstore=astra_vector_store)
|
96 |
|
97 |
query = st.text_input("Enter your query")
|
98 |
submit_query = st.button("Submit Query")
|
|
|
99 |
|
100 |
+
if submit_query and query:
|
101 |
+
retriever = astra_vector_index.as_retriever()
|
102 |
+
docs = retriever.get_relevant_documents(query)
|
103 |
+
response = hf_llm(docs)
|
104 |
+
st.write(f"Response: {response}")
|
105 |
|
|
|
106 |
|
107 |
if __name__ == "__main__":
|
108 |
main()
|