import os import torch from pipelines.wan_video import WanVideoPipeline, ModelConfig from pipelines.wan_video_face_swap import WanVideoPipeline_FaceSwap def load_wan_pipe( base_path, torch_dtype=torch.bfloat16, face_swap=False, use_vace=False, device="cuda" ): if not use_vace: diffusion_model_files = [ f"diffusion_pytorch_model-0000{i}-of-00006.safetensors" for i in range(1, 7) ] else: diffusion_model_files = [ f"diffusion_pytorch_model-0000{i}-of-00007.safetensors" for i in range(1, 8) ] diffusion_model_paths = [ os.path.join(base_path, fname) for fname in diffusion_model_files ] pipe_cls = WanVideoPipeline_FaceSwap if face_swap else WanVideoPipeline pipe = pipe_cls.from_pretrained( torch_dtype=torch_dtype, device=device, model_configs=[ ModelConfig( path=diffusion_model_paths, offload_device="cpu", skip_download=True, ), ModelConfig( path=os.path.join(base_path, "models_t5_umt5-xxl-enc-bf16.pth"), offload_device="cpu", skip_download=True, ), ModelConfig( path=os.path.join(base_path, "Wan2.1_VAE.pth"), offload_device="cpu", skip_download=True, ), ], tokenizer_config=ModelConfig( path=os.path.join(base_path, "google/umt5-xxl/"), offload_device="cpu", skip_download=True, ), ) pipe.enable_vram_management() return pipe