""" Concise re-implementation of ``https://github.com/openai/CLIP'' and ``https://github.com/mlfoundations/open_clip''. """ import math import torch import torch.nn as nn import torch.nn.functional as F import torchvision.transforms as T from .wan_video_dit import flash_attention class SelfAttention(nn.Module): def __init__(self, dim, num_heads, dropout=0.1, eps=1e-5): assert dim % num_heads == 0 super().__init__() self.dim = dim self.num_heads = num_heads self.head_dim = dim // num_heads self.eps = eps # layers self.q = nn.Linear(dim, dim) self.k = nn.Linear(dim, dim) self.v = nn.Linear(dim, dim) self.o = nn.Linear(dim, dim) self.dropout = nn.Dropout(dropout) def forward(self, x, mask): """ x: [B, L, C]. """ b, s, c, n, d = *x.size(), self.num_heads, self.head_dim # compute query, key, value q = self.q(x).reshape(b, s, n, d).permute(0, 2, 1, 3) k = self.k(x).reshape(b, s, n, d).permute(0, 2, 1, 3) v = self.v(x).reshape(b, s, n, d).permute(0, 2, 1, 3) # compute attention p = self.dropout.p if self.training else 0.0 x = F.scaled_dot_product_attention(q, k, v, mask, p) x = x.permute(0, 2, 1, 3).reshape(b, s, c) # output x = self.o(x) x = self.dropout(x) return x class AttentionBlock(nn.Module): def __init__(self, dim, num_heads, post_norm, dropout=0.1, eps=1e-5): super().__init__() self.dim = dim self.num_heads = num_heads self.post_norm = post_norm self.eps = eps # layers self.attn = SelfAttention(dim, num_heads, dropout, eps) self.norm1 = nn.LayerNorm(dim, eps=eps) self.ffn = nn.Sequential( nn.Linear(dim, dim * 4), nn.GELU(), nn.Linear(dim * 4, dim), nn.Dropout(dropout), ) self.norm2 = nn.LayerNorm(dim, eps=eps) def forward(self, x, mask): if self.post_norm: x = self.norm1(x + self.attn(x, mask)) x = self.norm2(x + self.ffn(x)) else: x = x + self.attn(self.norm1(x), mask) x = x + self.ffn(self.norm2(x)) return x class XLMRoberta(nn.Module): """ XLMRobertaModel with no pooler and no LM head. """ def __init__( self, vocab_size=250002, max_seq_len=514, type_size=1, pad_id=1, dim=1024, num_heads=16, num_layers=24, post_norm=True, dropout=0.1, eps=1e-5, ): super().__init__() self.vocab_size = vocab_size self.max_seq_len = max_seq_len self.type_size = type_size self.pad_id = pad_id self.dim = dim self.num_heads = num_heads self.num_layers = num_layers self.post_norm = post_norm self.eps = eps # embeddings self.token_embedding = nn.Embedding(vocab_size, dim, padding_idx=pad_id) self.type_embedding = nn.Embedding(type_size, dim) self.pos_embedding = nn.Embedding(max_seq_len, dim, padding_idx=pad_id) self.dropout = nn.Dropout(dropout) # blocks self.blocks = nn.ModuleList( [ AttentionBlock(dim, num_heads, post_norm, dropout, eps) for _ in range(num_layers) ] ) # norm layer self.norm = nn.LayerNorm(dim, eps=eps) def forward(self, ids): """ ids: [B, L] of torch.LongTensor. """ b, s = ids.shape mask = ids.ne(self.pad_id).long() # embeddings x = ( self.token_embedding(ids) + self.type_embedding(torch.zeros_like(ids)) + self.pos_embedding(self.pad_id + torch.cumsum(mask, dim=1) * mask) ) if self.post_norm: x = self.norm(x) x = self.dropout(x) # blocks mask = torch.where(mask.view(b, 1, 1, s).gt(0), 0.0, torch.finfo(x.dtype).min) for block in self.blocks: x = block(x, mask) # output if not self.post_norm: x = self.norm(x) return x def xlm_roberta_large(pretrained=False, return_tokenizer=False, device="cpu", **kwargs): """ XLMRobertaLarge adapted from Huggingface. """ # params cfg = dict( vocab_size=250002, max_seq_len=514, type_size=1, pad_id=1, dim=1024, num_heads=16, num_layers=24, post_norm=True, dropout=0.1, eps=1e-5, ) cfg.update(**kwargs) # init model if pretrained: from sora import DOWNLOAD_TO_CACHE # init a meta model with torch.device("meta"): model = XLMRoberta(**cfg) # load checkpoint model.load_state_dict( torch.load( DOWNLOAD_TO_CACHE("models/xlm_roberta/xlm_roberta_large.pth"), map_location=device, ), assign=True, ) else: # init a model on device with torch.device(device): model = XLMRoberta(**cfg) # init tokenizer if return_tokenizer: from sora.data import HuggingfaceTokenizer tokenizer = HuggingfaceTokenizer( name="xlm-roberta-large", seq_len=model.text_len, clean="whitespace" ) return model, tokenizer else: return model def pos_interpolate(pos, seq_len): if pos.size(1) == seq_len: return pos else: src_grid = int(math.sqrt(pos.size(1))) tar_grid = int(math.sqrt(seq_len)) n = pos.size(1) - src_grid * src_grid return torch.cat( [ pos[:, :n], F.interpolate( pos[:, n:] .float() .reshape(1, src_grid, src_grid, -1) .permute(0, 3, 1, 2), size=(tar_grid, tar_grid), mode="bicubic", align_corners=False, ) .flatten(2) .transpose(1, 2), ], dim=1, ) class QuickGELU(nn.Module): def forward(self, x): return x * torch.sigmoid(1.702 * x) class LayerNorm(nn.LayerNorm): def forward(self, x): return super().forward(x).type_as(x) class SelfAttention(nn.Module): def __init__( self, dim, num_heads, causal=False, attn_dropout=0.0, proj_dropout=0.0 ): assert dim % num_heads == 0 super().__init__() self.dim = dim self.num_heads = num_heads self.head_dim = dim // num_heads self.causal = causal self.attn_dropout = attn_dropout self.proj_dropout = proj_dropout # layers self.to_qkv = nn.Linear(dim, dim * 3) self.proj = nn.Linear(dim, dim) def forward(self, x): """ x: [B, L, C]. """ # compute query, key, value q, k, v = self.to_qkv(x).chunk(3, dim=-1) # compute attention x = flash_attention(q, k, v, num_heads=self.num_heads, compatibility_mode=True) # output x = self.proj(x) x = F.dropout(x, self.proj_dropout, self.training) return x class SwiGLU(nn.Module): def __init__(self, dim, mid_dim): super().__init__() self.dim = dim self.mid_dim = mid_dim # layers self.fc1 = nn.Linear(dim, mid_dim) self.fc2 = nn.Linear(dim, mid_dim) self.fc3 = nn.Linear(mid_dim, dim) def forward(self, x): x = F.silu(self.fc1(x)) * self.fc2(x) x = self.fc3(x) return x class AttentionBlock(nn.Module): def __init__( self, dim, mlp_ratio, num_heads, post_norm=False, causal=False, activation="quick_gelu", attn_dropout=0.0, proj_dropout=0.0, norm_eps=1e-5, ): assert activation in ["quick_gelu", "gelu", "swi_glu"] super().__init__() self.dim = dim self.mlp_ratio = mlp_ratio self.num_heads = num_heads self.post_norm = post_norm self.causal = causal self.norm_eps = norm_eps # layers self.norm1 = LayerNorm(dim, eps=norm_eps) self.attn = SelfAttention(dim, num_heads, causal, attn_dropout, proj_dropout) self.norm2 = LayerNorm(dim, eps=norm_eps) if activation == "swi_glu": self.mlp = SwiGLU(dim, int(dim * mlp_ratio)) else: self.mlp = nn.Sequential( nn.Linear(dim, int(dim * mlp_ratio)), QuickGELU() if activation == "quick_gelu" else nn.GELU(), nn.Linear(int(dim * mlp_ratio), dim), nn.Dropout(proj_dropout), ) def forward(self, x): if self.post_norm: x = x + self.norm1(self.attn(x)) x = x + self.norm2(self.mlp(x)) else: x = x + self.attn(self.norm1(x)) x = x + self.mlp(self.norm2(x)) return x class AttentionPool(nn.Module): def __init__( self, dim, mlp_ratio, num_heads, activation="gelu", proj_dropout=0.0, norm_eps=1e-5, ): assert dim % num_heads == 0 super().__init__() self.dim = dim self.mlp_ratio = mlp_ratio self.num_heads = num_heads self.head_dim = dim // num_heads self.proj_dropout = proj_dropout self.norm_eps = norm_eps # layers gain = 1.0 / math.sqrt(dim) self.cls_embedding = nn.Parameter(gain * torch.randn(1, 1, dim)) self.to_q = nn.Linear(dim, dim) self.to_kv = nn.Linear(dim, dim * 2) self.proj = nn.Linear(dim, dim) self.norm = LayerNorm(dim, eps=norm_eps) self.mlp = nn.Sequential( nn.Linear(dim, int(dim * mlp_ratio)), QuickGELU() if activation == "quick_gelu" else nn.GELU(), nn.Linear(int(dim * mlp_ratio), dim), nn.Dropout(proj_dropout), ) def forward(self, x): """ x: [B, L, C]. """ b, s, c, n, d = *x.size(), self.num_heads, self.head_dim # compute query, key, value q = self.to_q(self.cls_embedding).view(1, 1, n * d).expand(b, -1, -1) k, v = self.to_kv(x).chunk(2, dim=-1) # compute attention x = flash_attention(q, k, v, num_heads=self.num_heads, compatibility_mode=True) x = x.reshape(b, 1, c) # output x = self.proj(x) x = F.dropout(x, self.proj_dropout, self.training) # mlp x = x + self.mlp(self.norm(x)) return x[:, 0] class VisionTransformer(nn.Module): def __init__( self, image_size=224, patch_size=16, dim=768, mlp_ratio=4, out_dim=512, num_heads=12, num_layers=12, pool_type="token", pre_norm=True, post_norm=False, activation="quick_gelu", attn_dropout=0.0, proj_dropout=0.0, embedding_dropout=0.0, norm_eps=1e-5, ): if image_size % patch_size != 0: print("[WARNING] image_size is not divisible by patch_size", flush=True) assert pool_type in ("token", "token_fc", "attn_pool") out_dim = out_dim or dim super().__init__() self.image_size = image_size self.patch_size = patch_size self.num_patches = (image_size // patch_size) ** 2 self.dim = dim self.mlp_ratio = mlp_ratio self.out_dim = out_dim self.num_heads = num_heads self.num_layers = num_layers self.pool_type = pool_type self.post_norm = post_norm self.norm_eps = norm_eps # embeddings gain = 1.0 / math.sqrt(dim) self.patch_embedding = nn.Conv2d( 3, dim, kernel_size=patch_size, stride=patch_size, bias=not pre_norm ) if pool_type in ("token", "token_fc"): self.cls_embedding = nn.Parameter(gain * torch.randn(1, 1, dim)) self.pos_embedding = nn.Parameter( gain * torch.randn( 1, self.num_patches + (1 if pool_type in ("token", "token_fc") else 0), dim, ) ) self.dropout = nn.Dropout(embedding_dropout) # transformer self.pre_norm = LayerNorm(dim, eps=norm_eps) if pre_norm else None self.transformer = nn.Sequential( *[ AttentionBlock( dim, mlp_ratio, num_heads, post_norm, False, activation, attn_dropout, proj_dropout, norm_eps, ) for _ in range(num_layers) ] ) self.post_norm = LayerNorm(dim, eps=norm_eps) # head if pool_type == "token": self.head = nn.Parameter(gain * torch.randn(dim, out_dim)) elif pool_type == "token_fc": self.head = nn.Linear(dim, out_dim) elif pool_type == "attn_pool": self.head = AttentionPool( dim, mlp_ratio, num_heads, activation, proj_dropout, norm_eps ) def forward(self, x, interpolation=False, use_31_block=False): b = x.size(0) # embeddings x = self.patch_embedding(x).flatten(2).permute(0, 2, 1) if self.pool_type in ("token", "token_fc"): x = torch.cat( [ self.cls_embedding.expand(b, -1, -1).to( dtype=x.dtype, device=x.device ), x, ], dim=1, ) if interpolation: e = pos_interpolate(self.pos_embedding, x.size(1)) else: e = self.pos_embedding e = e.to(dtype=x.dtype, device=x.device) x = self.dropout(x + e) if self.pre_norm is not None: x = self.pre_norm(x) # transformer if use_31_block: x = self.transformer[:-1](x) return x else: x = self.transformer(x) return x class CLIP(nn.Module): def __init__( self, embed_dim=512, image_size=224, patch_size=16, vision_dim=768, vision_mlp_ratio=4, vision_heads=12, vision_layers=12, vision_pool="token", vision_pre_norm=True, vision_post_norm=False, vocab_size=49408, text_len=77, text_dim=512, text_mlp_ratio=4, text_heads=8, text_layers=12, text_causal=True, text_pool="argmax", text_head_bias=False, logit_bias=None, activation="quick_gelu", attn_dropout=0.0, proj_dropout=0.0, embedding_dropout=0.0, norm_eps=1e-5, ): super().__init__() self.embed_dim = embed_dim self.image_size = image_size self.patch_size = patch_size self.vision_dim = vision_dim self.vision_mlp_ratio = vision_mlp_ratio self.vision_heads = vision_heads self.vision_layers = vision_layers self.vision_pool = vision_pool self.vision_pre_norm = vision_pre_norm self.vision_post_norm = vision_post_norm self.vocab_size = vocab_size self.text_len = text_len self.text_dim = text_dim self.text_mlp_ratio = text_mlp_ratio self.text_heads = text_heads self.text_layers = text_layers self.text_causal = text_causal self.text_pool = text_pool self.text_head_bias = text_head_bias self.norm_eps = norm_eps # models self.visual = VisionTransformer( image_size=image_size, patch_size=patch_size, dim=vision_dim, mlp_ratio=vision_mlp_ratio, out_dim=embed_dim, num_heads=vision_heads, num_layers=vision_layers, pool_type=vision_pool, pre_norm=vision_pre_norm, post_norm=vision_post_norm, activation=activation, attn_dropout=attn_dropout, proj_dropout=proj_dropout, embedding_dropout=embedding_dropout, norm_eps=norm_eps, ) self.textual = TextTransformer( vocab_size=vocab_size, text_len=text_len, dim=text_dim, mlp_ratio=text_mlp_ratio, out_dim=embed_dim, num_heads=text_heads, num_layers=text_layers, causal=text_causal, pool_type=text_pool, head_bias=text_head_bias, activation=activation, attn_dropout=attn_dropout, proj_dropout=proj_dropout, embedding_dropout=embedding_dropout, norm_eps=norm_eps, ) self.log_scale = nn.Parameter(math.log(1 / 0.07) * torch.ones([])) if logit_bias is not None: self.logit_bias = nn.Parameter(logit_bias * torch.ones([])) # initialize weights self.init_weights() def forward(self, imgs, txt_ids): """ imgs: [B, 3, H, W] of torch.float32. - mean: [0.48145466, 0.4578275, 0.40821073] - std: [0.26862954, 0.26130258, 0.27577711] txt_ids: [B, L] of torch.long. Encoded by data.CLIPTokenizer. """ xi = self.visual(imgs) xt = self.textual(txt_ids) return xi, xt def init_weights(self): # embeddings nn.init.normal_(self.textual.token_embedding.weight, std=0.02) nn.init.normal_(self.visual.patch_embedding.weight, std=0.1) # attentions for modality in ["visual", "textual"]: dim = self.vision_dim if modality == "visual" else self.text_dim transformer = getattr(self, modality).transformer proj_gain = (1.0 / math.sqrt(dim)) * (1.0 / math.sqrt(2 * len(transformer))) attn_gain = 1.0 / math.sqrt(dim) mlp_gain = 1.0 / math.sqrt(2.0 * dim) for block in transformer: nn.init.normal_(block.attn.to_qkv.weight, std=attn_gain) nn.init.normal_(block.attn.proj.weight, std=proj_gain) nn.init.normal_(block.mlp[0].weight, std=mlp_gain) nn.init.normal_(block.mlp[2].weight, std=proj_gain) def param_groups(self): groups = [ { "params": [ p for n, p in self.named_parameters() if "norm" in n or n.endswith("bias") ], "weight_decay": 0.0, }, { "params": [ p for n, p in self.named_parameters() if not ("norm" in n or n.endswith("bias")) ] }, ] return groups class XLMRobertaWithHead(XLMRoberta): def __init__(self, **kwargs): self.out_dim = kwargs.pop("out_dim") super().__init__(**kwargs) # head mid_dim = (self.dim + self.out_dim) // 2 self.head = nn.Sequential( nn.Linear(self.dim, mid_dim, bias=False), nn.GELU(), nn.Linear(mid_dim, self.out_dim, bias=False), ) def forward(self, ids): # xlm-roberta x = super().forward(ids) # average pooling mask = ids.ne(self.pad_id).unsqueeze(-1).to(x) x = (x * mask).sum(dim=1) / mask.sum(dim=1) # head x = self.head(x) return x class XLMRobertaCLIP(nn.Module): def __init__( self, embed_dim=1024, image_size=224, patch_size=14, vision_dim=1280, vision_mlp_ratio=4, vision_heads=16, vision_layers=32, vision_pool="token", vision_pre_norm=True, vision_post_norm=False, activation="gelu", vocab_size=250002, max_text_len=514, type_size=1, pad_id=1, text_dim=1024, text_heads=16, text_layers=24, text_post_norm=True, text_dropout=0.1, attn_dropout=0.0, proj_dropout=0.0, embedding_dropout=0.0, norm_eps=1e-5, ): super().__init__() self.embed_dim = embed_dim self.image_size = image_size self.patch_size = patch_size self.vision_dim = vision_dim self.vision_mlp_ratio = vision_mlp_ratio self.vision_heads = vision_heads self.vision_layers = vision_layers self.vision_pre_norm = vision_pre_norm self.vision_post_norm = vision_post_norm self.activation = activation self.vocab_size = vocab_size self.max_text_len = max_text_len self.type_size = type_size self.pad_id = pad_id self.text_dim = text_dim self.text_heads = text_heads self.text_layers = text_layers self.text_post_norm = text_post_norm self.norm_eps = norm_eps # models self.visual = VisionTransformer( image_size=image_size, patch_size=patch_size, dim=vision_dim, mlp_ratio=vision_mlp_ratio, out_dim=embed_dim, num_heads=vision_heads, num_layers=vision_layers, pool_type=vision_pool, pre_norm=vision_pre_norm, post_norm=vision_post_norm, activation=activation, attn_dropout=attn_dropout, proj_dropout=proj_dropout, embedding_dropout=embedding_dropout, norm_eps=norm_eps, ) self.textual = None self.log_scale = nn.Parameter(math.log(1 / 0.07) * torch.ones([])) def forward(self, imgs, txt_ids): """ imgs: [B, 3, H, W] of torch.float32. - mean: [0.48145466, 0.4578275, 0.40821073] - std: [0.26862954, 0.26130258, 0.27577711] txt_ids: [B, L] of torch.long. Encoded by data.CLIPTokenizer. """ xi = self.visual(imgs) xt = self.textual(txt_ids) return xi, xt def param_groups(self): groups = [ { "params": [ p for n, p in self.named_parameters() if "norm" in n or n.endswith("bias") ], "weight_decay": 0.0, }, { "params": [ p for n, p in self.named_parameters() if not ("norm" in n or n.endswith("bias")) ] }, ] return groups def _clip( pretrained=False, pretrained_name=None, model_cls=CLIP, return_transforms=False, return_tokenizer=False, tokenizer_padding="eos", dtype=torch.float32, device="cpu", **kwargs, ): # init model if pretrained and pretrained_name: from sora import BUCKET, DOWNLOAD_TO_CACHE # init a meta model with torch.device("meta"): model = model_cls(**kwargs) # checkpoint path checkpoint = f"models/clip/{pretrained_name}" if dtype in (torch.float16, torch.bfloat16): suffix = "-" + {torch.float16: "fp16", torch.bfloat16: "bf16"}[dtype] if object_exists(BUCKET, f"{checkpoint}{suffix}.pth"): checkpoint = f"{checkpoint}{suffix}" checkpoint += ".pth" # load model.load_state_dict( torch.load(DOWNLOAD_TO_CACHE(checkpoint), map_location=device), assign=True, strict=False, ) else: # init a model on device with torch.device(device): model = model_cls(**kwargs) # set device output = (model,) # init transforms if return_transforms: # mean and std if "siglip" in pretrained_name.lower(): mean, std = [0.5, 0.5, 0.5], [0.5, 0.5, 0.5] else: mean = [0.48145466, 0.4578275, 0.40821073] std = [0.26862954, 0.26130258, 0.27577711] # transforms transforms = T.Compose( [ T.Resize( (model.image_size, model.image_size), interpolation=T.InterpolationMode.BICUBIC, ), T.ToTensor(), T.Normalize(mean=mean, std=std), ] ) output += (transforms,) # init tokenizer if return_tokenizer: from sora import data if "siglip" in pretrained_name.lower(): tokenizer = data.HuggingfaceTokenizer( name=f"timm/{pretrained_name}", seq_len=model.text_len, clean="canonicalize", ) elif "xlm" in pretrained_name.lower(): tokenizer = data.HuggingfaceTokenizer( name="xlm-roberta-large", seq_len=model.max_text_len - 2, clean="whitespace", ) elif "mba" in pretrained_name.lower(): tokenizer = data.HuggingfaceTokenizer( name="facebook/xlm-roberta-xl", seq_len=model.max_text_len - 2, clean="whitespace", ) else: tokenizer = data.CLIPTokenizer( seq_len=model.text_len, padding=tokenizer_padding ) output += (tokenizer,) return output[0] if len(output) == 1 else output def clip_xlm_roberta_vit_h_14( pretrained=False, pretrained_name="open-clip-xlm-roberta-large-vit-huge-14", **kwargs, ): cfg = dict( embed_dim=1024, image_size=224, patch_size=14, vision_dim=1280, vision_mlp_ratio=4, vision_heads=16, vision_layers=32, vision_pool="token", activation="gelu", vocab_size=250002, max_text_len=514, type_size=1, pad_id=1, text_dim=1024, text_heads=16, text_layers=24, text_post_norm=True, text_dropout=0.1, attn_dropout=0.0, proj_dropout=0.0, embedding_dropout=0.0, ) cfg.update(**kwargs) return _clip(pretrained, pretrained_name, XLMRobertaCLIP, **cfg) class WanImageEncoder(torch.nn.Module): def __init__(self): super().__init__() # init model self.model, self.transforms = clip_xlm_roberta_vit_h_14( pretrained=False, return_transforms=True, return_tokenizer=False, dtype=torch.float32, device="cpu", ) def encode_image(self, videos): # preprocess size = (self.model.image_size,) * 2 videos = torch.cat( [ F.interpolate(u, size=size, mode="bicubic", align_corners=False) for u in videos ] ) videos = self.transforms.transforms[-1](videos.mul_(0.5).add_(0.5)) # forward dtype = next(iter(self.model.visual.parameters())).dtype videos = videos.to(dtype) out = self.model.visual(videos, use_31_block=True) return out @staticmethod def state_dict_converter(): return WanImageEncoderStateDictConverter() class WanImageEncoderStateDictConverter: def __init__(self): pass def from_diffusers(self, state_dict): return state_dict def from_civitai(self, state_dict): state_dict_ = {} for name, param in state_dict.items(): if name.startswith("textual."): continue name = "model." + name state_dict_[name] = param return state_dict_