Stand-In / models /wan_video_motion_controller.py
fffiloni's picture
Migrated from GitHub
26557da verified
import torch
import torch.nn as nn
from .wan_video_dit import sinusoidal_embedding_1d
class WanMotionControllerModel(torch.nn.Module):
def __init__(self, freq_dim=256, dim=1536):
super().__init__()
self.freq_dim = freq_dim
self.linear = nn.Sequential(
nn.Linear(freq_dim, dim),
nn.SiLU(),
nn.Linear(dim, dim),
nn.SiLU(),
nn.Linear(dim, dim * 6),
)
def forward(self, motion_bucket_id):
emb = sinusoidal_embedding_1d(self.freq_dim, motion_bucket_id * 10)
emb = self.linear(emb)
return emb
def init(self):
state_dict = self.linear[-1].state_dict()
state_dict = {i: state_dict[i] * 0 for i in state_dict}
self.linear[-1].load_state_dict(state_dict)
@staticmethod
def state_dict_converter():
return WanMotionControllerModelDictConverter()
class WanMotionControllerModelDictConverter:
def __init__(self):
pass
def from_diffusers(self, state_dict):
return state_dict
def from_civitai(self, state_dict):
return state_dict