Spaces:
Paused
Paused
import torch | |
import torch.nn as nn | |
from .wan_video_dit import sinusoidal_embedding_1d | |
class WanMotionControllerModel(torch.nn.Module): | |
def __init__(self, freq_dim=256, dim=1536): | |
super().__init__() | |
self.freq_dim = freq_dim | |
self.linear = nn.Sequential( | |
nn.Linear(freq_dim, dim), | |
nn.SiLU(), | |
nn.Linear(dim, dim), | |
nn.SiLU(), | |
nn.Linear(dim, dim * 6), | |
) | |
def forward(self, motion_bucket_id): | |
emb = sinusoidal_embedding_1d(self.freq_dim, motion_bucket_id * 10) | |
emb = self.linear(emb) | |
return emb | |
def init(self): | |
state_dict = self.linear[-1].state_dict() | |
state_dict = {i: state_dict[i] * 0 for i in state_dict} | |
self.linear[-1].load_state_dict(state_dict) | |
def state_dict_converter(): | |
return WanMotionControllerModelDictConverter() | |
class WanMotionControllerModelDictConverter: | |
def __init__(self): | |
pass | |
def from_diffusers(self, state_dict): | |
return state_dict | |
def from_civitai(self, state_dict): | |
return state_dict | |