Stand-In / models /wan_video_dit.py
fffiloni's picture
Migrated from GitHub
26557da verified
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from typing import Tuple, Optional
from einops import rearrange
from .utils import hash_state_dict_keys
from .wan_video_camera_controller import SimpleAdapter
try:
import flash_attn_interface
FLASH_ATTN_3_AVAILABLE = True
except ModuleNotFoundError:
FLASH_ATTN_3_AVAILABLE = False
try:
import flash_attn
FLASH_ATTN_2_AVAILABLE = True
except ModuleNotFoundError:
FLASH_ATTN_2_AVAILABLE = False
try:
from sageattention import sageattn
SAGE_ATTN_AVAILABLE = True
except ModuleNotFoundError:
SAGE_ATTN_AVAILABLE = False
def flash_attention(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
num_heads: int,
compatibility_mode=False,
):
if compatibility_mode:
q = rearrange(q, "b s (n d) -> b n s d", n=num_heads)
k = rearrange(k, "b s (n d) -> b n s d", n=num_heads)
v = rearrange(v, "b s (n d) -> b n s d", n=num_heads)
x = F.scaled_dot_product_attention(q, k, v)
x = rearrange(x, "b n s d -> b s (n d)", n=num_heads)
elif FLASH_ATTN_3_AVAILABLE:
q = rearrange(q, "b s (n d) -> b s n d", n=num_heads)
k = rearrange(k, "b s (n d) -> b s n d", n=num_heads)
v = rearrange(v, "b s (n d) -> b s n d", n=num_heads)
x = flash_attn_interface.flash_attn_func(q, k, v)
if isinstance(x, tuple):
x = x[0]
x = rearrange(x, "b s n d -> b s (n d)", n=num_heads)
elif FLASH_ATTN_2_AVAILABLE:
q = rearrange(q, "b s (n d) -> b s n d", n=num_heads)
k = rearrange(k, "b s (n d) -> b s n d", n=num_heads)
v = rearrange(v, "b s (n d) -> b s n d", n=num_heads)
x = flash_attn.flash_attn_func(q, k, v)
x = rearrange(x, "b s n d -> b s (n d)", n=num_heads)
elif SAGE_ATTN_AVAILABLE:
q = rearrange(q, "b s (n d) -> b n s d", n=num_heads)
k = rearrange(k, "b s (n d) -> b n s d", n=num_heads)
v = rearrange(v, "b s (n d) -> b n s d", n=num_heads)
x = sageattn(q, k, v, tensor_layout="HND", is_causal=False)
x = rearrange(x, "b n s d -> b s (n d)", n=num_heads)
else:
q = rearrange(q, "b s (n d) -> b n s d", n=num_heads)
k = rearrange(k, "b s (n d) -> b n s d", n=num_heads)
v = rearrange(v, "b s (n d) -> b n s d", n=num_heads)
x = F.scaled_dot_product_attention(q, k, v)
x = rearrange(x, "b n s d -> b s (n d)", n=num_heads)
return x
def modulate(x: torch.Tensor, shift: torch.Tensor, scale: torch.Tensor):
return x * (1 + scale) + shift
def sinusoidal_embedding_1d(dim, position):
sinusoid = torch.outer(
position.type(torch.float64),
torch.pow(
10000,
-torch.arange(dim // 2, dtype=torch.float64, device=position.device).div(
dim // 2
),
),
)
x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1)
return x.to(position.dtype)
def precompute_freqs_cis_3d(dim: int, end: int = 1024, theta: float = 10000.0):
# 3d rope precompute
f_freqs_cis = precompute_freqs_cis(dim - 2 * (dim // 3), end + 1, theta)
h_freqs_cis = precompute_freqs_cis(dim // 3, end, theta)
w_freqs_cis = precompute_freqs_cis(dim // 3, end, theta)
return f_freqs_cis, h_freqs_cis, w_freqs_cis
def precompute_freqs_cis(dim: int, end: int = 1024, theta: float = 10000.0):
# 1d rope precompute
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].double() / dim))
###################################################### add f = -1
positions = torch.arange(-1, end, device=freqs.device)
freqs = torch.outer(positions, freqs)
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
######################################################
return freqs_cis
def rope_apply(x, freqs, num_heads):
x = rearrange(x, "b s (n d) -> b s n d", n=num_heads)
x_out = torch.view_as_complex(
x.to(torch.float64).reshape(x.shape[0], x.shape[1], x.shape[2], -1, 2)
)
x_out = torch.view_as_real(x_out * freqs).flatten(2)
return x_out.to(x.dtype)
class RMSNorm(nn.Module):
def __init__(self, dim, eps=1e-5):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + self.eps)
def forward(self, x):
dtype = x.dtype
return self.norm(x.float()).to(dtype) * self.weight
class AttentionModule(nn.Module):
def __init__(self, num_heads):
super().__init__()
self.num_heads = num_heads
def forward(self, q, k, v):
x = flash_attention(q=q, k=k, v=v, num_heads=self.num_heads)
return x
class LoRALinearLayer(nn.Module):
def __init__(
self,
in_features: int,
out_features: int,
rank: int = 128,
device="cuda",
dtype: Optional[torch.dtype] = torch.float32,
):
super().__init__()
self.down = nn.Linear(in_features, rank, bias=False, device=device, dtype=dtype)
self.up = nn.Linear(rank, out_features, bias=False, device=device, dtype=dtype)
self.rank = rank
self.out_features = out_features
self.in_features = in_features
nn.init.normal_(self.down.weight, std=1 / rank)
nn.init.zeros_(self.up.weight)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
orig_dtype = hidden_states.dtype
dtype = self.down.weight.dtype
down_hidden_states = self.down(hidden_states.to(dtype))
up_hidden_states = self.up(down_hidden_states)
return up_hidden_states.to(orig_dtype)
class SelfAttention(nn.Module):
def __init__(self, dim: int, num_heads: int, eps: float = 1e-6):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.q = nn.Linear(dim, dim)
self.k = nn.Linear(dim, dim)
self.v = nn.Linear(dim, dim)
self.o = nn.Linear(dim, dim)
self.norm_q = RMSNorm(dim, eps=eps)
self.norm_k = RMSNorm(dim, eps=eps)
self.attn = AttentionModule(self.num_heads)
self.kv_cache = None
self.cond_size = None
def init_lora(self, train=False):
dim = self.dim
self.q_loras = LoRALinearLayer(dim, dim, rank=128)
self.k_loras = LoRALinearLayer(dim, dim, rank=128)
self.v_loras = LoRALinearLayer(dim, dim, rank=128)
requires_grad = train
for lora in [self.q_loras, self.k_loras, self.v_loras]:
for param in lora.parameters():
param.requires_grad = requires_grad
def forward(self, x, freqs):
if self.cond_size is not None:
if self.kv_cache is None:
x_main, x_ip = x[:, : -self.cond_size], x[:, -self.cond_size :]
split_point = freqs.shape[0] - self.cond_size
freqs_main = freqs[:split_point]
freqs_ip = freqs[split_point:]
q_main = self.norm_q(self.q(x_main))
k_main = self.norm_k(self.k(x_main))
v_main = self.v(x_main)
q_main = rope_apply(q_main, freqs_main, self.num_heads)
k_main = rope_apply(k_main, freqs_main, self.num_heads)
q_ip = self.norm_q(self.q(x_ip) + self.q_loras(x_ip))
k_ip = self.norm_k(self.k(x_ip) + self.k_loras(x_ip))
v_ip = self.v(x_ip) + self.v_loras(x_ip)
q_ip = rope_apply(q_ip, freqs_ip, self.num_heads)
k_ip = rope_apply(k_ip, freqs_ip, self.num_heads)
self.kv_cache = {"k_ip": k_ip.detach(), "v_ip": v_ip.detach()}
full_k = torch.concat([k_main, k_ip], dim=1)
full_v = torch.concat([v_main, v_ip], dim=1)
cond_out = self.attn(q_ip, k_ip, v_ip)
main_out = self.attn(q_main, full_k, full_v)
out = torch.concat([main_out, cond_out], dim=1)
return self.o(out)
else:
k_ip = self.kv_cache["k_ip"]
v_ip = self.kv_cache["v_ip"]
q_main = self.norm_q(self.q(x))
k_main = self.norm_k(self.k(x))
v_main = self.v(x)
q_main = rope_apply(q_main, freqs, self.num_heads)
k_main = rope_apply(k_main, freqs, self.num_heads)
full_k = torch.concat([k_main, k_ip], dim=1)
full_v = torch.concat([v_main, v_ip], dim=1)
x = self.attn(q_main, full_k, full_v)
return self.o(x)
else:
q = self.norm_q(self.q(x))
k = self.norm_k(self.k(x))
v = self.v(x)
q = rope_apply(q, freqs, self.num_heads)
k = rope_apply(k, freqs, self.num_heads)
x = self.attn(q, k, v)
return self.o(x)
class CrossAttention(nn.Module):
def __init__(
self, dim: int, num_heads: int, eps: float = 1e-6, has_image_input: bool = False
):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.q = nn.Linear(dim, dim)
self.k = nn.Linear(dim, dim)
self.v = nn.Linear(dim, dim)
self.o = nn.Linear(dim, dim)
self.norm_q = RMSNorm(dim, eps=eps)
self.norm_k = RMSNorm(dim, eps=eps)
self.has_image_input = has_image_input
if has_image_input:
self.k_img = nn.Linear(dim, dim)
self.v_img = nn.Linear(dim, dim)
self.norm_k_img = RMSNorm(dim, eps=eps)
self.attn = AttentionModule(self.num_heads)
def forward(self, x: torch.Tensor, y: torch.Tensor):
if self.has_image_input:
img = y[:, :257]
ctx = y[:, 257:]
else:
ctx = y
q = self.norm_q(self.q(x))
k = self.norm_k(self.k(ctx))
v = self.v(ctx)
x = self.attn(q, k, v)
if self.has_image_input:
k_img = self.norm_k_img(self.k_img(img))
v_img = self.v_img(img)
y = flash_attention(q, k_img, v_img, num_heads=self.num_heads)
x = x + y
return self.o(x)
class GateModule(nn.Module):
def __init__(
self,
):
super().__init__()
def forward(self, x, gate, residual):
return x + gate * residual
class DiTBlock(nn.Module):
def __init__(
self,
has_image_input: bool,
dim: int,
num_heads: int,
ffn_dim: int,
eps: float = 1e-6,
):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.ffn_dim = ffn_dim
self.self_attn = SelfAttention(dim, num_heads, eps)
self.cross_attn = CrossAttention(
dim, num_heads, eps, has_image_input=has_image_input
)
self.norm1 = nn.LayerNorm(dim, eps=eps, elementwise_affine=False)
self.norm2 = nn.LayerNorm(dim, eps=eps, elementwise_affine=False)
self.norm3 = nn.LayerNorm(dim, eps=eps)
self.ffn = nn.Sequential(
nn.Linear(dim, ffn_dim),
nn.GELU(approximate="tanh"),
nn.Linear(ffn_dim, dim),
)
self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5)
self.gate = GateModule()
def forward(self, x, context, t_mod, freqs, x_ip=None, t_mod_ip=None):
# msa: multi-head self-attention mlp: multi-layer perceptron
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
self.modulation.to(dtype=t_mod.dtype, device=t_mod.device) + t_mod
).chunk(6, dim=1)
input_x = modulate(self.norm1(x), shift_msa, scale_msa)
if x_ip is not None:
(
shift_msa_ip,
scale_msa_ip,
gate_msa_ip,
shift_mlp_ip,
scale_mlp_ip,
gate_mlp_ip,
) = (
self.modulation.to(dtype=t_mod_ip.dtype, device=t_mod_ip.device)
+ t_mod_ip
).chunk(6, dim=1)
input_x_ip = modulate(
self.norm1(x_ip), shift_msa_ip, scale_msa_ip
) # [1, 1024, 5120]
self.self_attn.cond_size = input_x_ip.shape[1]
input_x = torch.concat([input_x, input_x_ip], dim=1)
self.self_attn.kv_cache = None
attn_out = self.self_attn(input_x, freqs)
if x_ip is not None:
attn_out, attn_out_ip = (
attn_out[:, : -self.self_attn.cond_size],
attn_out[:, -self.self_attn.cond_size :],
)
x = self.gate(x, gate_msa, attn_out)
x = x + self.cross_attn(self.norm3(x), context)
input_x = modulate(self.norm2(x), shift_mlp, scale_mlp)
x = self.gate(x, gate_mlp, self.ffn(input_x))
if x_ip is not None:
x_ip = self.gate(x_ip, gate_msa_ip, attn_out_ip)
input_x_ip = modulate(self.norm2(x_ip), shift_mlp_ip, scale_mlp_ip)
x_ip = self.gate(x_ip, gate_mlp_ip, self.ffn(input_x_ip))
return x, x_ip
class MLP(torch.nn.Module):
def __init__(self, in_dim, out_dim, has_pos_emb=False):
super().__init__()
self.proj = torch.nn.Sequential(
nn.LayerNorm(in_dim),
nn.Linear(in_dim, in_dim),
nn.GELU(),
nn.Linear(in_dim, out_dim),
nn.LayerNorm(out_dim),
)
self.has_pos_emb = has_pos_emb
if has_pos_emb:
self.emb_pos = torch.nn.Parameter(torch.zeros((1, 514, 1280)))
def forward(self, x):
if self.has_pos_emb:
x = x + self.emb_pos.to(dtype=x.dtype, device=x.device)
return self.proj(x)
class Head(nn.Module):
def __init__(
self, dim: int, out_dim: int, patch_size: Tuple[int, int, int], eps: float
):
super().__init__()
self.dim = dim
self.patch_size = patch_size
self.norm = nn.LayerNorm(dim, eps=eps, elementwise_affine=False)
self.head = nn.Linear(dim, out_dim * math.prod(patch_size))
self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5)
def forward(self, x, t_mod):
if len(t_mod.shape) == 3:
shift, scale = (
self.modulation.unsqueeze(0).to(dtype=t_mod.dtype, device=t_mod.device)
+ t_mod.unsqueeze(2)
).chunk(2, dim=2)
x = self.head(self.norm(x) * (1 + scale.squeeze(2)) + shift.squeeze(2))
else:
shift, scale = (
self.modulation.to(dtype=t_mod.dtype, device=t_mod.device) + t_mod
).chunk(2, dim=1)
x = self.head(self.norm(x) * (1 + scale) + shift)
return x
class WanModel(torch.nn.Module):
def __init__(
self,
dim: int,
in_dim: int,
ffn_dim: int,
out_dim: int,
text_dim: int,
freq_dim: int,
eps: float,
patch_size: Tuple[int, int, int],
num_heads: int,
num_layers: int,
has_image_input: bool,
has_image_pos_emb: bool = False,
has_ref_conv: bool = False,
add_control_adapter: bool = False,
in_dim_control_adapter: int = 24,
seperated_timestep: bool = False,
require_vae_embedding: bool = True,
require_clip_embedding: bool = True,
fuse_vae_embedding_in_latents: bool = False,
):
super().__init__()
self.dim = dim
self.freq_dim = freq_dim
self.has_image_input = has_image_input
self.patch_size = patch_size
self.seperated_timestep = seperated_timestep
self.require_vae_embedding = require_vae_embedding
self.require_clip_embedding = require_clip_embedding
self.fuse_vae_embedding_in_latents = fuse_vae_embedding_in_latents
self.patch_embedding = nn.Conv3d(
in_dim, dim, kernel_size=patch_size, stride=patch_size
)
self.text_embedding = nn.Sequential(
nn.Linear(text_dim, dim), nn.GELU(approximate="tanh"), nn.Linear(dim, dim)
)
self.time_embedding = nn.Sequential(
nn.Linear(freq_dim, dim), nn.SiLU(), nn.Linear(dim, dim)
)
self.time_projection = nn.Sequential(nn.SiLU(), nn.Linear(dim, dim * 6))
self.blocks = nn.ModuleList(
[
DiTBlock(has_image_input, dim, num_heads, ffn_dim, eps)
for _ in range(num_layers)
]
)
self.head = Head(dim, out_dim, patch_size, eps)
head_dim = dim // num_heads
self.freqs = precompute_freqs_cis_3d(head_dim)
if has_image_input:
self.img_emb = MLP(
1280, dim, has_pos_emb=has_image_pos_emb
) # clip_feature_dim = 1280
if has_ref_conv:
self.ref_conv = nn.Conv2d(16, dim, kernel_size=(2, 2), stride=(2, 2))
self.has_image_pos_emb = has_image_pos_emb
self.has_ref_conv = has_ref_conv
if add_control_adapter:
self.control_adapter = SimpleAdapter(
in_dim_control_adapter,
dim,
kernel_size=patch_size[1:],
stride=patch_size[1:],
)
else:
self.control_adapter = None
def patchify(
self, x: torch.Tensor, control_camera_latents_input: torch.Tensor = None
):
x = self.patch_embedding(x)
if (
self.control_adapter is not None
and control_camera_latents_input is not None
):
y_camera = self.control_adapter(control_camera_latents_input)
x = [u + v for u, v in zip(x, y_camera)]
x = x[0].unsqueeze(0)
grid_size = x.shape[2:]
x = rearrange(x, "b c f h w -> b (f h w) c").contiguous()
return x, grid_size # x, grid_size: (f, h, w)
def unpatchify(self, x: torch.Tensor, grid_size: torch.Tensor):
return rearrange(
x,
"b (f h w) (x y z c) -> b c (f x) (h y) (w z)",
f=grid_size[0],
h=grid_size[1],
w=grid_size[2],
x=self.patch_size[0],
y=self.patch_size[1],
z=self.patch_size[2],
)
def forward(
self,
x: torch.Tensor,
timestep: torch.Tensor,
context: torch.Tensor,
clip_feature: Optional[torch.Tensor] = None,
y: Optional[torch.Tensor] = None,
use_gradient_checkpointing: bool = False,
use_gradient_checkpointing_offload: bool = False,
ip_image=None,
**kwargs,
):
x_ip = None
t_mod_ip = None
t = self.time_embedding(sinusoidal_embedding_1d(self.freq_dim, timestep))
t_mod = self.time_projection(t).unflatten(1, (6, self.dim))
context = self.text_embedding(context)
if ip_image is not None:
timestep_ip = torch.zeros_like(timestep) # [B] with 0s
t_ip = self.time_embedding(
sinusoidal_embedding_1d(self.freq_dim, timestep_ip)
)
t_mod_ip = self.time_projection(t_ip).unflatten(1, (6, self.dim))
x, (f, h, w) = self.patchify(x)
offset = 1
freqs = (
torch.cat(
[
self.freqs[0][offset : f + offset]
.view(f, 1, 1, -1)
.expand(f, h, w, -1),
self.freqs[1][offset : h + offset]
.view(1, h, 1, -1)
.expand(f, h, w, -1),
self.freqs[2][offset : w + offset]
.view(1, 1, w, -1)
.expand(f, h, w, -1),
],
dim=-1,
)
.reshape(f * h * w, 1, -1)
.to(x.device)
)
############################################################################################
if ip_image is not None:
if ip_image.dim() == 6 and ip_image.shape[3] == 1:
ip_image = ip_image.squeeze(1)
x_ip, (f_ip, h_ip, w_ip) = self.patchify(
ip_image
) # x_ip [1, 1024, 5120] [B, N, D] f_ip = 1 h_ip = 32 w_ip = 32
freqs_ip = (
torch.cat(
[
self.freqs[0][0]
.view(f_ip, 1, 1, -1)
.expand(f_ip, h_ip, w_ip, -1),
self.freqs[1][h + offset : h + offset + h_ip]
.view(1, h_ip, 1, -1)
.expand(f_ip, h_ip, w_ip, -1),
self.freqs[2][w + offset : w + offset + w_ip]
.view(1, 1, w_ip, -1)
.expand(f_ip, h_ip, w_ip, -1),
],
dim=-1,
)
.reshape(f_ip * h_ip * w_ip, 1, -1)
.to(x_ip.device)
)
freqs = torch.cat([freqs, freqs_ip], dim=0)
############################################################################################
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
for block in self.blocks:
if self.training and use_gradient_checkpointing:
if use_gradient_checkpointing_offload:
with torch.autograd.graph.save_on_cpu():
x, x_ip = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
x,
context,
t_mod,
freqs,
x_ip,
t_mod_ip,
use_reentrant=False,
)
else:
x, x_ip = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
x,
context,
t_mod,
freqs,
x_ip,
t_mod_ip,
use_reentrant=False,
)
else:
x, x_ip = block(x, context, t_mod, freqs, x_ip, t_mod_ip)
x = self.head(x, t)
x = self.unpatchify(x, (f, h, w))
return x
@staticmethod
def state_dict_converter():
return WanModelStateDictConverter()
class WanModelStateDictConverter:
def __init__(self):
pass
def from_diffusers(self, state_dict):
rename_dict = {
"blocks.0.attn1.norm_k.weight": "blocks.0.self_attn.norm_k.weight",
"blocks.0.attn1.norm_q.weight": "blocks.0.self_attn.norm_q.weight",
"blocks.0.attn1.to_k.bias": "blocks.0.self_attn.k.bias",
"blocks.0.attn1.to_k.weight": "blocks.0.self_attn.k.weight",
"blocks.0.attn1.to_out.0.bias": "blocks.0.self_attn.o.bias",
"blocks.0.attn1.to_out.0.weight": "blocks.0.self_attn.o.weight",
"blocks.0.attn1.to_q.bias": "blocks.0.self_attn.q.bias",
"blocks.0.attn1.to_q.weight": "blocks.0.self_attn.q.weight",
"blocks.0.attn1.to_v.bias": "blocks.0.self_attn.v.bias",
"blocks.0.attn1.to_v.weight": "blocks.0.self_attn.v.weight",
"blocks.0.attn2.norm_k.weight": "blocks.0.cross_attn.norm_k.weight",
"blocks.0.attn2.norm_q.weight": "blocks.0.cross_attn.norm_q.weight",
"blocks.0.attn2.to_k.bias": "blocks.0.cross_attn.k.bias",
"blocks.0.attn2.to_k.weight": "blocks.0.cross_attn.k.weight",
"blocks.0.attn2.to_out.0.bias": "blocks.0.cross_attn.o.bias",
"blocks.0.attn2.to_out.0.weight": "blocks.0.cross_attn.o.weight",
"blocks.0.attn2.to_q.bias": "blocks.0.cross_attn.q.bias",
"blocks.0.attn2.to_q.weight": "blocks.0.cross_attn.q.weight",
"blocks.0.attn2.to_v.bias": "blocks.0.cross_attn.v.bias",
"blocks.0.attn2.to_v.weight": "blocks.0.cross_attn.v.weight",
"blocks.0.ffn.net.0.proj.bias": "blocks.0.ffn.0.bias",
"blocks.0.ffn.net.0.proj.weight": "blocks.0.ffn.0.weight",
"blocks.0.ffn.net.2.bias": "blocks.0.ffn.2.bias",
"blocks.0.ffn.net.2.weight": "blocks.0.ffn.2.weight",
"blocks.0.norm2.bias": "blocks.0.norm3.bias",
"blocks.0.norm2.weight": "blocks.0.norm3.weight",
"blocks.0.scale_shift_table": "blocks.0.modulation",
"condition_embedder.text_embedder.linear_1.bias": "text_embedding.0.bias",
"condition_embedder.text_embedder.linear_1.weight": "text_embedding.0.weight",
"condition_embedder.text_embedder.linear_2.bias": "text_embedding.2.bias",
"condition_embedder.text_embedder.linear_2.weight": "text_embedding.2.weight",
"condition_embedder.time_embedder.linear_1.bias": "time_embedding.0.bias",
"condition_embedder.time_embedder.linear_1.weight": "time_embedding.0.weight",
"condition_embedder.time_embedder.linear_2.bias": "time_embedding.2.bias",
"condition_embedder.time_embedder.linear_2.weight": "time_embedding.2.weight",
"condition_embedder.time_proj.bias": "time_projection.1.bias",
"condition_embedder.time_proj.weight": "time_projection.1.weight",
"patch_embedding.bias": "patch_embedding.bias",
"patch_embedding.weight": "patch_embedding.weight",
"scale_shift_table": "head.modulation",
"proj_out.bias": "head.head.bias",
"proj_out.weight": "head.head.weight",
}
state_dict_ = {}
for name, param in state_dict.items():
if name in rename_dict:
state_dict_[rename_dict[name]] = param
else:
name_ = ".".join(name.split(".")[:1] + ["0"] + name.split(".")[2:])
if name_ in rename_dict:
name_ = rename_dict[name_]
name_ = ".".join(
name_.split(".")[:1]
+ [name.split(".")[1]]
+ name_.split(".")[2:]
)
state_dict_[name_] = param
if hash_state_dict_keys(state_dict) == "cb104773c6c2cb6df4f9529ad5c60d0b":
config = {
"model_type": "t2v",
"patch_size": (1, 2, 2),
"text_len": 512,
"in_dim": 16,
"dim": 5120,
"ffn_dim": 13824,
"freq_dim": 256,
"text_dim": 4096,
"out_dim": 16,
"num_heads": 40,
"num_layers": 40,
"window_size": (-1, -1),
"qk_norm": True,
"cross_attn_norm": True,
"eps": 1e-6,
}
else:
config = {}
return state_dict_, config
def from_civitai(self, state_dict):
state_dict = {
name: param
for name, param in state_dict.items()
if not name.startswith("vace")
}
if hash_state_dict_keys(state_dict) == "9269f8db9040a9d860eaca435be61814":
config = {
"has_image_input": False,
"patch_size": [1, 2, 2],
"in_dim": 16,
"dim": 1536,
"ffn_dim": 8960,
"freq_dim": 256,
"text_dim": 4096,
"out_dim": 16,
"num_heads": 12,
"num_layers": 30,
"eps": 1e-6,
}
elif hash_state_dict_keys(state_dict) == "aafcfd9672c3a2456dc46e1cb6e52c70":
config = {
"has_image_input": False,
"patch_size": [1, 2, 2],
"in_dim": 16,
"dim": 5120,
"ffn_dim": 13824,
"freq_dim": 256,
"text_dim": 4096,
"out_dim": 16,
"num_heads": 40,
"num_layers": 40,
"eps": 1e-6,
}
elif hash_state_dict_keys(state_dict) == "6bfcfb3b342cb286ce886889d519a77e":
config = {
"has_image_input": True,
"patch_size": [1, 2, 2],
"in_dim": 36,
"dim": 5120,
"ffn_dim": 13824,
"freq_dim": 256,
"text_dim": 4096,
"out_dim": 16,
"num_heads": 40,
"num_layers": 40,
"eps": 1e-6,
}
elif hash_state_dict_keys(state_dict) == "6d6ccde6845b95ad9114ab993d917893":
config = {
"has_image_input": True,
"patch_size": [1, 2, 2],
"in_dim": 36,
"dim": 1536,
"ffn_dim": 8960,
"freq_dim": 256,
"text_dim": 4096,
"out_dim": 16,
"num_heads": 12,
"num_layers": 30,
"eps": 1e-6,
}
elif hash_state_dict_keys(state_dict) == "6bfcfb3b342cb286ce886889d519a77e":
config = {
"has_image_input": True,
"patch_size": [1, 2, 2],
"in_dim": 36,
"dim": 5120,
"ffn_dim": 13824,
"freq_dim": 256,
"text_dim": 4096,
"out_dim": 16,
"num_heads": 40,
"num_layers": 40,
"eps": 1e-6,
}
elif hash_state_dict_keys(state_dict) == "349723183fc063b2bfc10bb2835cf677":
# 1.3B PAI control
config = {
"has_image_input": True,
"patch_size": [1, 2, 2],
"in_dim": 48,
"dim": 1536,
"ffn_dim": 8960,
"freq_dim": 256,
"text_dim": 4096,
"out_dim": 16,
"num_heads": 12,
"num_layers": 30,
"eps": 1e-6,
}
elif hash_state_dict_keys(state_dict) == "efa44cddf936c70abd0ea28b6cbe946c":
# 14B PAI control
config = {
"has_image_input": True,
"patch_size": [1, 2, 2],
"in_dim": 48,
"dim": 5120,
"ffn_dim": 13824,
"freq_dim": 256,
"text_dim": 4096,
"out_dim": 16,
"num_heads": 40,
"num_layers": 40,
"eps": 1e-6,
}
elif hash_state_dict_keys(state_dict) == "3ef3b1f8e1dab83d5b71fd7b617f859f":
config = {
"has_image_input": True,
"patch_size": [1, 2, 2],
"in_dim": 36,
"dim": 5120,
"ffn_dim": 13824,
"freq_dim": 256,
"text_dim": 4096,
"out_dim": 16,
"num_heads": 40,
"num_layers": 40,
"eps": 1e-6,
"has_image_pos_emb": True,
}
elif hash_state_dict_keys(state_dict) == "70ddad9d3a133785da5ea371aae09504":
# 1.3B PAI control v1.1
config = {
"has_image_input": True,
"patch_size": [1, 2, 2],
"in_dim": 48,
"dim": 1536,
"ffn_dim": 8960,
"freq_dim": 256,
"text_dim": 4096,
"out_dim": 16,
"num_heads": 12,
"num_layers": 30,
"eps": 1e-6,
"has_ref_conv": True,
}
elif hash_state_dict_keys(state_dict) == "26bde73488a92e64cc20b0a7485b9e5b":
# 14B PAI control v1.1
config = {
"has_image_input": True,
"patch_size": [1, 2, 2],
"in_dim": 48,
"dim": 5120,
"ffn_dim": 13824,
"freq_dim": 256,
"text_dim": 4096,
"out_dim": 16,
"num_heads": 40,
"num_layers": 40,
"eps": 1e-6,
"has_ref_conv": True,
}
elif hash_state_dict_keys(state_dict) == "ac6a5aa74f4a0aab6f64eb9a72f19901":
# 1.3B PAI control-camera v1.1
config = {
"has_image_input": True,
"patch_size": [1, 2, 2],
"in_dim": 32,
"dim": 1536,
"ffn_dim": 8960,
"freq_dim": 256,
"text_dim": 4096,
"out_dim": 16,
"num_heads": 12,
"num_layers": 30,
"eps": 1e-6,
"has_ref_conv": False,
"add_control_adapter": True,
"in_dim_control_adapter": 24,
}
elif hash_state_dict_keys(state_dict) == "b61c605c2adbd23124d152ed28e049ae":
# 14B PAI control-camera v1.1
config = {
"has_image_input": True,
"patch_size": [1, 2, 2],
"in_dim": 32,
"dim": 5120,
"ffn_dim": 13824,
"freq_dim": 256,
"text_dim": 4096,
"out_dim": 16,
"num_heads": 40,
"num_layers": 40,
"eps": 1e-6,
"has_ref_conv": False,
"add_control_adapter": True,
"in_dim_control_adapter": 24,
}
elif hash_state_dict_keys(state_dict) == "1f5ab7703c6fc803fdded85ff040c316":
# Wan-AI/Wan2.2-TI2V-5B
config = {
"has_image_input": False,
"patch_size": [1, 2, 2],
"in_dim": 48,
"dim": 3072,
"ffn_dim": 14336,
"freq_dim": 256,
"text_dim": 4096,
"out_dim": 48,
"num_heads": 24,
"num_layers": 30,
"eps": 1e-6,
"seperated_timestep": True,
"require_clip_embedding": False,
"require_vae_embedding": False,
"fuse_vae_embedding_in_latents": True,
}
elif hash_state_dict_keys(state_dict) == "5b013604280dd715f8457c6ed6d6a626":
# Wan-AI/Wan2.2-I2V-A14B
config = {
"has_image_input": False,
"patch_size": [1, 2, 2],
"in_dim": 36,
"dim": 5120,
"ffn_dim": 13824,
"freq_dim": 256,
"text_dim": 4096,
"out_dim": 16,
"num_heads": 40,
"num_layers": 40,
"eps": 1e-6,
"require_clip_embedding": False,
}
else:
config = {}
return state_dict, config