File size: 11,214 Bytes
26557da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import torch
from einops import rearrange, repeat


class TileWorker:
    def __init__(self):
        pass

    def mask(self, height, width, border_width):
        # Create a mask with shape (height, width).
        # The centre area is filled with 1, and the border line is filled with values in range (0, 1].
        x = torch.arange(height).repeat(width, 1).T
        y = torch.arange(width).repeat(height, 1)
        mask = torch.stack([x + 1, height - x, y + 1, width - y]).min(dim=0).values
        mask = (mask / border_width).clip(0, 1)
        return mask

    def tile(self, model_input, tile_size, tile_stride, tile_device, tile_dtype):
        # Convert a tensor (b, c, h, w) to (b, c, tile_size, tile_size, tile_num)
        batch_size, channel, _, _ = model_input.shape
        model_input = model_input.to(device=tile_device, dtype=tile_dtype)
        unfold_operator = torch.nn.Unfold(
            kernel_size=(tile_size, tile_size), stride=(tile_stride, tile_stride)
        )
        model_input = unfold_operator(model_input)
        model_input = model_input.view((batch_size, channel, tile_size, tile_size, -1))

        return model_input

    def tiled_inference(
        self,
        forward_fn,
        model_input,
        tile_batch_size,
        inference_device,
        inference_dtype,
        tile_device,
        tile_dtype,
    ):
        # Call y=forward_fn(x) for each tile
        tile_num = model_input.shape[-1]
        model_output_stack = []

        for tile_id in range(0, tile_num, tile_batch_size):
            # process input
            tile_id_ = min(tile_id + tile_batch_size, tile_num)
            x = model_input[:, :, :, :, tile_id:tile_id_]
            x = x.to(device=inference_device, dtype=inference_dtype)
            x = rearrange(x, "b c h w n -> (n b) c h w")

            # process output
            y = forward_fn(x)
            y = rearrange(y, "(n b) c h w -> b c h w n", n=tile_id_ - tile_id)
            y = y.to(device=tile_device, dtype=tile_dtype)
            model_output_stack.append(y)

        model_output = torch.concat(model_output_stack, dim=-1)
        return model_output

    def io_scale(self, model_output, tile_size):
        # Determine the size modification happened in forward_fn
        # We only consider the same scale on height and width.
        io_scale = model_output.shape[2] / tile_size
        return io_scale

    def untile(
        self,
        model_output,
        height,
        width,
        tile_size,
        tile_stride,
        border_width,
        tile_device,
        tile_dtype,
    ):
        # The reversed function of tile
        mask = self.mask(tile_size, tile_size, border_width)
        mask = mask.to(device=tile_device, dtype=tile_dtype)
        mask = rearrange(mask, "h w -> 1 1 h w 1")
        model_output = model_output * mask

        fold_operator = torch.nn.Fold(
            output_size=(height, width),
            kernel_size=(tile_size, tile_size),
            stride=(tile_stride, tile_stride),
        )
        mask = repeat(mask[0, 0, :, :, 0], "h w -> 1 (h w) n", n=model_output.shape[-1])
        model_output = rearrange(model_output, "b c h w n -> b (c h w) n")
        model_output = fold_operator(model_output) / fold_operator(mask)

        return model_output

    def tiled_forward(
        self,
        forward_fn,
        model_input,
        tile_size,
        tile_stride,
        tile_batch_size=1,
        tile_device="cpu",
        tile_dtype=torch.float32,
        border_width=None,
    ):
        # Prepare
        inference_device, inference_dtype = model_input.device, model_input.dtype
        height, width = model_input.shape[2], model_input.shape[3]
        border_width = int(tile_stride * 0.5) if border_width is None else border_width

        # tile
        model_input = self.tile(
            model_input, tile_size, tile_stride, tile_device, tile_dtype
        )

        # inference
        model_output = self.tiled_inference(
            forward_fn,
            model_input,
            tile_batch_size,
            inference_device,
            inference_dtype,
            tile_device,
            tile_dtype,
        )

        # resize
        io_scale = self.io_scale(model_output, tile_size)
        height, width = int(height * io_scale), int(width * io_scale)
        tile_size, tile_stride = int(tile_size * io_scale), int(tile_stride * io_scale)
        border_width = int(border_width * io_scale)

        # untile
        model_output = self.untile(
            model_output,
            height,
            width,
            tile_size,
            tile_stride,
            border_width,
            tile_device,
            tile_dtype,
        )

        # Done!
        model_output = model_output.to(device=inference_device, dtype=inference_dtype)
        return model_output


class FastTileWorker:
    def __init__(self):
        pass

    def build_mask(self, data, is_bound):
        _, _, H, W = data.shape
        h = repeat(torch.arange(H), "H -> H W", H=H, W=W)
        w = repeat(torch.arange(W), "W -> H W", H=H, W=W)
        border_width = (H + W) // 4
        pad = torch.ones_like(h) * border_width
        mask = (
            torch.stack(
                [
                    pad if is_bound[0] else h + 1,
                    pad if is_bound[1] else H - h,
                    pad if is_bound[2] else w + 1,
                    pad if is_bound[3] else W - w,
                ]
            )
            .min(dim=0)
            .values
        )
        mask = mask.clip(1, border_width)
        mask = (mask / border_width).to(dtype=data.dtype, device=data.device)
        mask = rearrange(mask, "H W -> 1 H W")
        return mask

    def tiled_forward(
        self,
        forward_fn,
        model_input,
        tile_size,
        tile_stride,
        tile_device="cpu",
        tile_dtype=torch.float32,
        border_width=None,
    ):
        # Prepare
        B, C, H, W = model_input.shape
        border_width = int(tile_stride * 0.5) if border_width is None else border_width
        weight = torch.zeros((1, 1, H, W), dtype=tile_dtype, device=tile_device)
        values = torch.zeros((B, C, H, W), dtype=tile_dtype, device=tile_device)

        # Split tasks
        tasks = []
        for h in range(0, H, tile_stride):
            for w in range(0, W, tile_stride):
                if (h - tile_stride >= 0 and h - tile_stride + tile_size >= H) or (
                    w - tile_stride >= 0 and w - tile_stride + tile_size >= W
                ):
                    continue
                h_, w_ = h + tile_size, w + tile_size
                if h_ > H:
                    h, h_ = H - tile_size, H
                if w_ > W:
                    w, w_ = W - tile_size, W
                tasks.append((h, h_, w, w_))

        # Run
        for hl, hr, wl, wr in tasks:
            # Forward
            hidden_states_batch = forward_fn(hl, hr, wl, wr).to(
                dtype=tile_dtype, device=tile_device
            )

            mask = self.build_mask(
                hidden_states_batch, is_bound=(hl == 0, hr >= H, wl == 0, wr >= W)
            )
            values[:, :, hl:hr, wl:wr] += hidden_states_batch * mask
            weight[:, :, hl:hr, wl:wr] += mask
        values /= weight
        return values


class TileWorker2Dto3D:
    """
    Process 3D tensors, but only enable TileWorker on 2D.
    """

    def __init__(self):
        pass

    def build_mask(self, T, H, W, dtype, device, is_bound, border_width):
        t = repeat(torch.arange(T), "T -> T H W", T=T, H=H, W=W)
        h = repeat(torch.arange(H), "H -> T H W", T=T, H=H, W=W)
        w = repeat(torch.arange(W), "W -> T H W", T=T, H=H, W=W)
        border_width = (H + W) // 4 if border_width is None else border_width
        pad = torch.ones_like(h) * border_width
        mask = (
            torch.stack(
                [
                    pad if is_bound[0] else t + 1,
                    pad if is_bound[1] else T - t,
                    pad if is_bound[2] else h + 1,
                    pad if is_bound[3] else H - h,
                    pad if is_bound[4] else w + 1,
                    pad if is_bound[5] else W - w,
                ]
            )
            .min(dim=0)
            .values
        )
        mask = mask.clip(1, border_width)
        mask = (mask / border_width).to(dtype=dtype, device=device)
        mask = rearrange(mask, "T H W -> 1 1 T H W")
        return mask

    def tiled_forward(
        self,
        forward_fn,
        model_input,
        tile_size,
        tile_stride,
        tile_device="cpu",
        tile_dtype=torch.float32,
        computation_device="cuda",
        computation_dtype=torch.float32,
        border_width=None,
        scales=[1, 1, 1, 1],
        progress_bar=lambda x: x,
    ):
        B, C, T, H, W = model_input.shape
        scale_C, scale_T, scale_H, scale_W = scales
        tile_size_H, tile_size_W = tile_size
        tile_stride_H, tile_stride_W = tile_stride

        value = torch.zeros(
            (B, int(C * scale_C), int(T * scale_T), int(H * scale_H), int(W * scale_W)),
            dtype=tile_dtype,
            device=tile_device,
        )
        weight = torch.zeros(
            (1, 1, int(T * scale_T), int(H * scale_H), int(W * scale_W)),
            dtype=tile_dtype,
            device=tile_device,
        )

        # Split tasks
        tasks = []
        for h in range(0, H, tile_stride_H):
            for w in range(0, W, tile_stride_W):
                if (
                    h - tile_stride_H >= 0 and h - tile_stride_H + tile_size_H >= H
                ) or (w - tile_stride_W >= 0 and w - tile_stride_W + tile_size_W >= W):
                    continue
                h_, w_ = h + tile_size_H, w + tile_size_W
                if h_ > H:
                    h, h_ = max(H - tile_size_H, 0), H
                if w_ > W:
                    w, w_ = max(W - tile_size_W, 0), W
                tasks.append((h, h_, w, w_))

        # Run
        for hl, hr, wl, wr in progress_bar(tasks):
            mask = self.build_mask(
                int(T * scale_T),
                int((hr - hl) * scale_H),
                int((wr - wl) * scale_W),
                tile_dtype,
                tile_device,
                is_bound=(True, True, hl == 0, hr >= H, wl == 0, wr >= W),
                border_width=border_width,
            )
            grid_input = model_input[:, :, :, hl:hr, wl:wr].to(
                dtype=computation_dtype, device=computation_device
            )
            grid_output = forward_fn(grid_input).to(
                dtype=tile_dtype, device=tile_device
            )
            value[
                :,
                :,
                :,
                int(hl * scale_H) : int(hr * scale_H),
                int(wl * scale_W) : int(wr * scale_W),
            ] += grid_output * mask
            weight[
                :,
                :,
                :,
                int(hl * scale_H) : int(hr * scale_H),
                int(wl * scale_W) : int(wr * scale_W),
            ] += mask
        value = value / weight
        return value