Upload 4 files
Browse files- CogVideoX/CogVideoX_cli.py +90 -0
- CogVideoX/CogVideoX_pipeline_rgba.py +744 -0
- CogVideoX/CogVideoX_rgba_utils.py +313 -0
- CogVideoX/CogVideoX_test.py +26 -0
CogVideoX/CogVideoX_cli.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from diffusers import CogVideoXDPMScheduler
|
4 |
+
from pipeline_rgba import CogVideoXPipeline
|
5 |
+
from diffusers.utils import export_to_video
|
6 |
+
import argparse
|
7 |
+
import numpy as np
|
8 |
+
from rgba_utils import *
|
9 |
+
|
10 |
+
def main(args):
|
11 |
+
# 1. load pipeline
|
12 |
+
pipe = CogVideoXPipeline.from_pretrained(args.model_path, torch_dtype=torch.bfloat16)
|
13 |
+
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
14 |
+
pipe.enable_sequential_cpu_offload()
|
15 |
+
pipe.vae.enable_slicing()
|
16 |
+
pipe.vae.enable_tiling()
|
17 |
+
|
18 |
+
|
19 |
+
# 2. define prompt and arguments
|
20 |
+
pipeline_args = {
|
21 |
+
"prompt": args.prompt,
|
22 |
+
"guidance_scale": args.guidance_scale,
|
23 |
+
"num_inference_steps": args.num_inference_steps,
|
24 |
+
"height": args.height,
|
25 |
+
"width": args.width,
|
26 |
+
"num_frames": args.num_frames,
|
27 |
+
"output_type": "latent",
|
28 |
+
"use_dynamic_cfg":True,
|
29 |
+
}
|
30 |
+
|
31 |
+
# 3. prepare rgbx utils
|
32 |
+
# breakpoint()
|
33 |
+
seq_length = 2 * (
|
34 |
+
(args.height // pipe.vae_scale_factor_spatial // 2)
|
35 |
+
* (args.width // pipe.vae_scale_factor_spatial // 2)
|
36 |
+
* ((args.num_frames - 1) // pipe.vae_scale_factor_temporal + 1)
|
37 |
+
)
|
38 |
+
# seq_length = 35100
|
39 |
+
|
40 |
+
prepare_for_rgba_inference(
|
41 |
+
pipe.transformer,
|
42 |
+
rgba_weights_path=args.lora_path,
|
43 |
+
device="cuda",
|
44 |
+
dtype=torch.bfloat16,
|
45 |
+
text_length=226,
|
46 |
+
seq_length=seq_length, # this is for the creation of attention mask.
|
47 |
+
)
|
48 |
+
|
49 |
+
# 4. run inference
|
50 |
+
generator = torch.manual_seed(args.seed) if args.seed else None
|
51 |
+
frames_latents = pipe(**pipeline_args, generator=generator).frames
|
52 |
+
|
53 |
+
frames_latents_rgb, frames_latents_alpha = frames_latents.chunk(2, dim=1)
|
54 |
+
|
55 |
+
frames_rgb = decode_latents(pipe, frames_latents_rgb)
|
56 |
+
frames_alpha = decode_latents(pipe, frames_latents_alpha)
|
57 |
+
|
58 |
+
|
59 |
+
pooled_alpha = np.max(frames_alpha, axis=-1, keepdims=True)
|
60 |
+
frames_alpha_pooled = np.repeat(pooled_alpha, 3, axis=-1)
|
61 |
+
premultiplied_rgb = frames_rgb * frames_alpha_pooled
|
62 |
+
|
63 |
+
if os.path.exists(args.output_path) == False:
|
64 |
+
os.makedirs(args.output_path)
|
65 |
+
|
66 |
+
export_to_video(premultiplied_rgb[0], os.path.join(args.output_path, "rgb.mp4"), fps=args.fps)
|
67 |
+
export_to_video(frames_alpha[0], os.path.join(args.output_path, "alpha.mp4"), fps=args.fps)
|
68 |
+
|
69 |
+
|
70 |
+
if __name__ == "__main__":
|
71 |
+
parser = argparse.ArgumentParser(description="Generate a video from a text prompt")
|
72 |
+
parser.add_argument("--prompt", type=str, required=True, help="The description of the video to be generated")
|
73 |
+
parser.add_argument("--lora_path", type=str, default="/hpc2hdd/home/lwang592/projects/CogVideo/sat/outputs/training/ckpts-5b-attn_rebias-partial_lora-8gpu-wo_t2a/lora-rgba-12-21-19-11/5000/rgba_lora.safetensors", help="The path of the LoRA weights to be used")
|
74 |
+
|
75 |
+
parser.add_argument(
|
76 |
+
"--model_path", type=str, default="THUDM/CogVideoX-5B", help="Path of the pre-trained model use"
|
77 |
+
)
|
78 |
+
|
79 |
+
|
80 |
+
parser.add_argument("--output_path", type=str, default="./output", help="The path save generated video")
|
81 |
+
parser.add_argument("--guidance_scale", type=float, default=6.0, help="The scale for classifier-free guidance")
|
82 |
+
parser.add_argument("--num_inference_steps", type=int, default=50, help="Inference steps")
|
83 |
+
parser.add_argument("--num_frames", type=int, default=49, help="Number of steps for the inference process")
|
84 |
+
parser.add_argument("--width", type=int, default=720, help="Number of steps for the inference process")
|
85 |
+
parser.add_argument("--height", type=int, default=480, help="Number of steps for the inference process")
|
86 |
+
parser.add_argument("--fps", type=int, default=8, help="Number of steps for the inference process")
|
87 |
+
parser.add_argument("--seed", type=int, default=None, help="The seed for reproducibility")
|
88 |
+
args = parser.parse_args()
|
89 |
+
|
90 |
+
main(args)
|
CogVideoX/CogVideoX_pipeline_rgba.py
ADDED
@@ -0,0 +1,744 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import inspect
|
17 |
+
import math
|
18 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
from transformers import T5EncoderModel, T5Tokenizer
|
22 |
+
|
23 |
+
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
24 |
+
from diffusers.loaders import CogVideoXLoraLoaderMixin
|
25 |
+
from diffusers.models import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel
|
26 |
+
from diffusers.models.embeddings import get_3d_rotary_pos_embed
|
27 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
28 |
+
from diffusers.schedulers import CogVideoXDDIMScheduler, CogVideoXDPMScheduler
|
29 |
+
from diffusers.utils import logging, replace_example_docstring
|
30 |
+
from diffusers.utils.torch_utils import randn_tensor
|
31 |
+
from diffusers.video_processor import VideoProcessor
|
32 |
+
from diffusers.pipelines.cogvideo.pipeline_output import CogVideoXPipelineOutput
|
33 |
+
|
34 |
+
|
35 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
36 |
+
|
37 |
+
|
38 |
+
EXAMPLE_DOC_STRING = """
|
39 |
+
Examples:
|
40 |
+
```python
|
41 |
+
>>> import torch
|
42 |
+
>>> from diffusers import CogVideoXPipeline
|
43 |
+
>>> from diffusers.utils import export_to_video
|
44 |
+
|
45 |
+
>>> # Models: "THUDM/CogVideoX-2b" or "THUDM/CogVideoX-5b"
|
46 |
+
>>> pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-2b", torch_dtype=torch.float16).to("cuda")
|
47 |
+
>>> prompt = (
|
48 |
+
... "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. "
|
49 |
+
... "The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other "
|
50 |
+
... "pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, "
|
51 |
+
... "casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. "
|
52 |
+
... "The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical "
|
53 |
+
... "atmosphere of this unique musical performance."
|
54 |
+
... )
|
55 |
+
>>> video = pipe(prompt=prompt, guidance_scale=6, num_inference_steps=50).frames[0]
|
56 |
+
>>> export_to_video(video, "output.mp4", fps=8)
|
57 |
+
```
|
58 |
+
"""
|
59 |
+
|
60 |
+
|
61 |
+
# Similar to diffusers.pipelines.hunyuandit.pipeline_hunyuandit.get_resize_crop_region_for_grid
|
62 |
+
def get_resize_crop_region_for_grid(src, tgt_width, tgt_height):
|
63 |
+
tw = tgt_width
|
64 |
+
th = tgt_height
|
65 |
+
h, w = src
|
66 |
+
r = h / w
|
67 |
+
if r > (th / tw):
|
68 |
+
resize_height = th
|
69 |
+
resize_width = int(round(th / h * w))
|
70 |
+
else:
|
71 |
+
resize_width = tw
|
72 |
+
resize_height = int(round(tw / w * h))
|
73 |
+
|
74 |
+
crop_top = int(round((th - resize_height) / 2.0))
|
75 |
+
crop_left = int(round((tw - resize_width) / 2.0))
|
76 |
+
|
77 |
+
return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)
|
78 |
+
|
79 |
+
|
80 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
81 |
+
def retrieve_timesteps(
|
82 |
+
scheduler,
|
83 |
+
num_inference_steps: Optional[int] = None,
|
84 |
+
device: Optional[Union[str, torch.device]] = None,
|
85 |
+
timesteps: Optional[List[int]] = None,
|
86 |
+
sigmas: Optional[List[float]] = None,
|
87 |
+
**kwargs,
|
88 |
+
):
|
89 |
+
r"""
|
90 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
91 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
92 |
+
|
93 |
+
Args:
|
94 |
+
scheduler (`SchedulerMixin`):
|
95 |
+
The scheduler to get timesteps from.
|
96 |
+
num_inference_steps (`int`):
|
97 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
98 |
+
must be `None`.
|
99 |
+
device (`str` or `torch.device`, *optional*):
|
100 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
101 |
+
timesteps (`List[int]`, *optional*):
|
102 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
103 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
104 |
+
sigmas (`List[float]`, *optional*):
|
105 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
106 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
107 |
+
|
108 |
+
Returns:
|
109 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
110 |
+
second element is the number of inference steps.
|
111 |
+
"""
|
112 |
+
if timesteps is not None and sigmas is not None:
|
113 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
114 |
+
if timesteps is not None:
|
115 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
116 |
+
if not accepts_timesteps:
|
117 |
+
raise ValueError(
|
118 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
119 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
120 |
+
)
|
121 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
122 |
+
timesteps = scheduler.timesteps
|
123 |
+
num_inference_steps = len(timesteps)
|
124 |
+
elif sigmas is not None:
|
125 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
126 |
+
if not accept_sigmas:
|
127 |
+
raise ValueError(
|
128 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
129 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
130 |
+
)
|
131 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
132 |
+
timesteps = scheduler.timesteps
|
133 |
+
num_inference_steps = len(timesteps)
|
134 |
+
else:
|
135 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
136 |
+
timesteps = scheduler.timesteps
|
137 |
+
return timesteps, num_inference_steps
|
138 |
+
|
139 |
+
|
140 |
+
class CogVideoXPipeline(DiffusionPipeline, CogVideoXLoraLoaderMixin):
|
141 |
+
r"""
|
142 |
+
Pipeline for text-to-video generation using CogVideoX.
|
143 |
+
|
144 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
145 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
146 |
+
|
147 |
+
Args:
|
148 |
+
vae ([`AutoencoderKL`]):
|
149 |
+
Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
|
150 |
+
text_encoder ([`T5EncoderModel`]):
|
151 |
+
Frozen text-encoder. CogVideoX uses
|
152 |
+
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel); specifically the
|
153 |
+
[t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
|
154 |
+
tokenizer (`T5Tokenizer`):
|
155 |
+
Tokenizer of class
|
156 |
+
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
|
157 |
+
transformer ([`CogVideoXTransformer3DModel`]):
|
158 |
+
A text conditioned `CogVideoXTransformer3DModel` to denoise the encoded video latents.
|
159 |
+
scheduler ([`SchedulerMixin`]):
|
160 |
+
A scheduler to be used in combination with `transformer` to denoise the encoded video latents.
|
161 |
+
"""
|
162 |
+
|
163 |
+
_optional_components = []
|
164 |
+
model_cpu_offload_seq = "text_encoder->transformer->vae"
|
165 |
+
|
166 |
+
_callback_tensor_inputs = [
|
167 |
+
"latents",
|
168 |
+
"prompt_embeds",
|
169 |
+
"negative_prompt_embeds",
|
170 |
+
]
|
171 |
+
|
172 |
+
def __init__(
|
173 |
+
self,
|
174 |
+
tokenizer: T5Tokenizer,
|
175 |
+
text_encoder: T5EncoderModel,
|
176 |
+
vae: AutoencoderKLCogVideoX,
|
177 |
+
transformer: CogVideoXTransformer3DModel,
|
178 |
+
scheduler: Union[CogVideoXDDIMScheduler, CogVideoXDPMScheduler],
|
179 |
+
):
|
180 |
+
super().__init__()
|
181 |
+
|
182 |
+
self.register_modules(
|
183 |
+
tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
|
184 |
+
)
|
185 |
+
self.vae_scale_factor_spatial = (
|
186 |
+
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
|
187 |
+
)
|
188 |
+
self.vae_scale_factor_temporal = (
|
189 |
+
self.vae.config.temporal_compression_ratio if hasattr(self, "vae") and self.vae is not None else 4
|
190 |
+
)
|
191 |
+
self.vae_scaling_factor_image = (
|
192 |
+
self.vae.config.scaling_factor if hasattr(self, "vae") and self.vae is not None else 0.7
|
193 |
+
)
|
194 |
+
|
195 |
+
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
|
196 |
+
|
197 |
+
def _get_t5_prompt_embeds(
|
198 |
+
self,
|
199 |
+
prompt: Union[str, List[str]] = None,
|
200 |
+
num_videos_per_prompt: int = 1,
|
201 |
+
max_sequence_length: int = 226,
|
202 |
+
device: Optional[torch.device] = None,
|
203 |
+
dtype: Optional[torch.dtype] = None,
|
204 |
+
):
|
205 |
+
device = device or self._execution_device
|
206 |
+
dtype = dtype or self.text_encoder.dtype
|
207 |
+
|
208 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
209 |
+
batch_size = len(prompt)
|
210 |
+
|
211 |
+
text_inputs = self.tokenizer(
|
212 |
+
prompt,
|
213 |
+
padding="max_length",
|
214 |
+
max_length=max_sequence_length,
|
215 |
+
truncation=True,
|
216 |
+
add_special_tokens=True,
|
217 |
+
return_tensors="pt",
|
218 |
+
)
|
219 |
+
text_input_ids = text_inputs.input_ids
|
220 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
221 |
+
|
222 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
223 |
+
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1])
|
224 |
+
logger.warning(
|
225 |
+
"The following part of your input was truncated because `max_sequence_length` is set to "
|
226 |
+
f" {max_sequence_length} tokens: {removed_text}"
|
227 |
+
)
|
228 |
+
|
229 |
+
prompt_embeds = self.text_encoder(text_input_ids.to(device))[0]
|
230 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
231 |
+
|
232 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
233 |
+
_, seq_len, _ = prompt_embeds.shape
|
234 |
+
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
|
235 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
|
236 |
+
|
237 |
+
return prompt_embeds
|
238 |
+
|
239 |
+
def encode_prompt(
|
240 |
+
self,
|
241 |
+
prompt: Union[str, List[str]],
|
242 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
243 |
+
do_classifier_free_guidance: bool = True,
|
244 |
+
num_videos_per_prompt: int = 1,
|
245 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
246 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
247 |
+
max_sequence_length: int = 226,
|
248 |
+
device: Optional[torch.device] = None,
|
249 |
+
dtype: Optional[torch.dtype] = None,
|
250 |
+
):
|
251 |
+
r"""
|
252 |
+
Encodes the prompt into text encoder hidden states.
|
253 |
+
|
254 |
+
Args:
|
255 |
+
prompt (`str` or `List[str]`, *optional*):
|
256 |
+
prompt to be encoded
|
257 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
258 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
259 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
260 |
+
less than `1`).
|
261 |
+
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
|
262 |
+
Whether to use classifier free guidance or not.
|
263 |
+
num_videos_per_prompt (`int`, *optional*, defaults to 1):
|
264 |
+
Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
|
265 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
266 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
267 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
268 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
269 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
270 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
271 |
+
argument.
|
272 |
+
device: (`torch.device`, *optional*):
|
273 |
+
torch device
|
274 |
+
dtype: (`torch.dtype`, *optional*):
|
275 |
+
torch dtype
|
276 |
+
"""
|
277 |
+
device = device or self._execution_device
|
278 |
+
|
279 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
280 |
+
if prompt is not None:
|
281 |
+
batch_size = len(prompt)
|
282 |
+
else:
|
283 |
+
batch_size = prompt_embeds.shape[0]
|
284 |
+
|
285 |
+
if prompt_embeds is None:
|
286 |
+
prompt_embeds = self._get_t5_prompt_embeds(
|
287 |
+
prompt=prompt,
|
288 |
+
num_videos_per_prompt=num_videos_per_prompt,
|
289 |
+
max_sequence_length=max_sequence_length,
|
290 |
+
device=device,
|
291 |
+
dtype=dtype,
|
292 |
+
)
|
293 |
+
|
294 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
295 |
+
negative_prompt = negative_prompt or ""
|
296 |
+
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
297 |
+
|
298 |
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
299 |
+
raise TypeError(
|
300 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
301 |
+
f" {type(prompt)}."
|
302 |
+
)
|
303 |
+
elif batch_size != len(negative_prompt):
|
304 |
+
raise ValueError(
|
305 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
306 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
307 |
+
" the batch size of `prompt`."
|
308 |
+
)
|
309 |
+
|
310 |
+
negative_prompt_embeds = self._get_t5_prompt_embeds(
|
311 |
+
prompt=negative_prompt,
|
312 |
+
num_videos_per_prompt=num_videos_per_prompt,
|
313 |
+
max_sequence_length=max_sequence_length,
|
314 |
+
device=device,
|
315 |
+
dtype=dtype,
|
316 |
+
)
|
317 |
+
|
318 |
+
return prompt_embeds, negative_prompt_embeds
|
319 |
+
|
320 |
+
def prepare_latents(
|
321 |
+
self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None
|
322 |
+
):
|
323 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
324 |
+
raise ValueError(
|
325 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
326 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
327 |
+
)
|
328 |
+
|
329 |
+
shape = (
|
330 |
+
batch_size,
|
331 |
+
(num_frames - 1) // self.vae_scale_factor_temporal + 1,
|
332 |
+
num_channels_latents,
|
333 |
+
height // self.vae_scale_factor_spatial,
|
334 |
+
width // self.vae_scale_factor_spatial,
|
335 |
+
)
|
336 |
+
|
337 |
+
if latents is None:
|
338 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
339 |
+
else:
|
340 |
+
latents = latents.to(device)
|
341 |
+
|
342 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
343 |
+
latents = latents * self.scheduler.init_noise_sigma
|
344 |
+
return latents
|
345 |
+
|
346 |
+
def decode_latents(self, latents: torch.Tensor) -> torch.Tensor:
|
347 |
+
latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width]
|
348 |
+
latents = 1 / self.vae_scaling_factor_image * latents
|
349 |
+
|
350 |
+
frames = self.vae.decode(latents).sample
|
351 |
+
return frames
|
352 |
+
|
353 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
354 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
355 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
356 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
357 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
358 |
+
# and should be between [0, 1]
|
359 |
+
|
360 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
361 |
+
extra_step_kwargs = {}
|
362 |
+
if accepts_eta:
|
363 |
+
extra_step_kwargs["eta"] = eta
|
364 |
+
|
365 |
+
# check if the scheduler accepts generator
|
366 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
367 |
+
if accepts_generator:
|
368 |
+
extra_step_kwargs["generator"] = generator
|
369 |
+
return extra_step_kwargs
|
370 |
+
|
371 |
+
# Copied from diffusers.pipelines.latte.pipeline_latte.LattePipeline.check_inputs
|
372 |
+
def check_inputs(
|
373 |
+
self,
|
374 |
+
prompt,
|
375 |
+
height,
|
376 |
+
width,
|
377 |
+
negative_prompt,
|
378 |
+
callback_on_step_end_tensor_inputs,
|
379 |
+
prompt_embeds=None,
|
380 |
+
negative_prompt_embeds=None,
|
381 |
+
):
|
382 |
+
if height % 8 != 0 or width % 8 != 0:
|
383 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
384 |
+
|
385 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
386 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
387 |
+
):
|
388 |
+
raise ValueError(
|
389 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
390 |
+
)
|
391 |
+
if prompt is not None and prompt_embeds is not None:
|
392 |
+
raise ValueError(
|
393 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
394 |
+
" only forward one of the two."
|
395 |
+
)
|
396 |
+
elif prompt is None and prompt_embeds is None:
|
397 |
+
raise ValueError(
|
398 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
399 |
+
)
|
400 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
401 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
402 |
+
|
403 |
+
if prompt is not None and negative_prompt_embeds is not None:
|
404 |
+
raise ValueError(
|
405 |
+
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
|
406 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
407 |
+
)
|
408 |
+
|
409 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
410 |
+
raise ValueError(
|
411 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
412 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
413 |
+
)
|
414 |
+
|
415 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
416 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
417 |
+
raise ValueError(
|
418 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
419 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
420 |
+
f" {negative_prompt_embeds.shape}."
|
421 |
+
)
|
422 |
+
|
423 |
+
def fuse_qkv_projections(self) -> None:
|
424 |
+
r"""Enables fused QKV projections."""
|
425 |
+
self.fusing_transformer = True
|
426 |
+
self.transformer.fuse_qkv_projections()
|
427 |
+
|
428 |
+
def unfuse_qkv_projections(self) -> None:
|
429 |
+
r"""Disable QKV projection fusion if enabled."""
|
430 |
+
if not self.fusing_transformer:
|
431 |
+
logger.warning("The Transformer was not initially fused for QKV projections. Doing nothing.")
|
432 |
+
else:
|
433 |
+
self.transformer.unfuse_qkv_projections()
|
434 |
+
self.fusing_transformer = False
|
435 |
+
|
436 |
+
def _prepare_rotary_positional_embeddings(
|
437 |
+
self,
|
438 |
+
height: int,
|
439 |
+
width: int,
|
440 |
+
num_frames: int,
|
441 |
+
device: torch.device,
|
442 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
443 |
+
grid_height = height // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
|
444 |
+
grid_width = width // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
|
445 |
+
base_size_width = 720 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
|
446 |
+
base_size_height = 480 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
|
447 |
+
|
448 |
+
grid_crops_coords = get_resize_crop_region_for_grid(
|
449 |
+
(grid_height, grid_width), base_size_width, base_size_height
|
450 |
+
)
|
451 |
+
freqs_cos, freqs_sin = get_3d_rotary_pos_embed(
|
452 |
+
embed_dim=self.transformer.config.attention_head_dim,
|
453 |
+
crops_coords=grid_crops_coords,
|
454 |
+
grid_size=(grid_height, grid_width),
|
455 |
+
temporal_size=num_frames,
|
456 |
+
)
|
457 |
+
|
458 |
+
freqs_cos = freqs_cos.to(device=device)
|
459 |
+
freqs_sin = freqs_sin.to(device=device)
|
460 |
+
return freqs_cos, freqs_sin
|
461 |
+
|
462 |
+
@property
|
463 |
+
def guidance_scale(self):
|
464 |
+
return self._guidance_scale
|
465 |
+
|
466 |
+
@property
|
467 |
+
def num_timesteps(self):
|
468 |
+
return self._num_timesteps
|
469 |
+
|
470 |
+
@property
|
471 |
+
def attention_kwargs(self):
|
472 |
+
return self._attention_kwargs
|
473 |
+
|
474 |
+
@property
|
475 |
+
def interrupt(self):
|
476 |
+
return self._interrupt
|
477 |
+
|
478 |
+
@torch.no_grad()
|
479 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
480 |
+
def __call__(
|
481 |
+
self,
|
482 |
+
prompt: Optional[Union[str, List[str]]] = None,
|
483 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
484 |
+
height: int = 480,
|
485 |
+
width: int = 720,
|
486 |
+
num_frames: int = 49,
|
487 |
+
num_inference_steps: int = 50,
|
488 |
+
timesteps: Optional[List[int]] = None,
|
489 |
+
guidance_scale: float = 6,
|
490 |
+
use_dynamic_cfg: bool = False,
|
491 |
+
num_videos_per_prompt: int = 1,
|
492 |
+
eta: float = 0.0,
|
493 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
494 |
+
latents: Optional[torch.FloatTensor] = None,
|
495 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
496 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
497 |
+
output_type: str = "pil",
|
498 |
+
return_dict: bool = True,
|
499 |
+
attention_kwargs: Optional[Dict[str, Any]] = None,
|
500 |
+
callback_on_step_end: Optional[
|
501 |
+
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
502 |
+
] = None,
|
503 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
504 |
+
max_sequence_length: int = 226,
|
505 |
+
) -> Union[CogVideoXPipelineOutput, Tuple]:
|
506 |
+
"""
|
507 |
+
Function invoked when calling the pipeline for generation.
|
508 |
+
|
509 |
+
Args:
|
510 |
+
prompt (`str` or `List[str]`, *optional*):
|
511 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
512 |
+
instead.
|
513 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
514 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
515 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
516 |
+
less than `1`).
|
517 |
+
height (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial):
|
518 |
+
The height in pixels of the generated image. This is set to 480 by default for the best results.
|
519 |
+
width (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial):
|
520 |
+
The width in pixels of the generated image. This is set to 720 by default for the best results.
|
521 |
+
num_frames (`int`, defaults to `48`):
|
522 |
+
Number of frames to generate. Must be divisible by self.vae_scale_factor_temporal. Generated video will
|
523 |
+
contain 1 extra frame because CogVideoX is conditioned with (num_seconds * fps + 1) frames where
|
524 |
+
num_seconds is 6 and fps is 8. However, since videos can be saved at any fps, the only condition that
|
525 |
+
needs to be satisfied is that of divisibility mentioned above.
|
526 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
527 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
528 |
+
expense of slower inference.
|
529 |
+
timesteps (`List[int]`, *optional*):
|
530 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
531 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
532 |
+
passed will be used. Must be in descending order.
|
533 |
+
guidance_scale (`float`, *optional*, defaults to 7.0):
|
534 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
535 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
536 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
537 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
538 |
+
usually at the expense of lower image quality.
|
539 |
+
num_videos_per_prompt (`int`, *optional*, defaults to 1):
|
540 |
+
The number of videos to generate per prompt.
|
541 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
542 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
543 |
+
to make generation deterministic.
|
544 |
+
latents (`torch.FloatTensor`, *optional*):
|
545 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
546 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
547 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
548 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
549 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
550 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
551 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
552 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
553 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
554 |
+
argument.
|
555 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
556 |
+
The output format of the generate image. Choose between
|
557 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
558 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
559 |
+
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
560 |
+
of a plain tuple.
|
561 |
+
attention_kwargs (`dict`, *optional*):
|
562 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
563 |
+
`self.processor` in
|
564 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
565 |
+
callback_on_step_end (`Callable`, *optional*):
|
566 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
567 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
568 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
569 |
+
`callback_on_step_end_tensor_inputs`.
|
570 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
571 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
572 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
573 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
574 |
+
max_sequence_length (`int`, defaults to `226`):
|
575 |
+
Maximum sequence length in encoded prompt. Must be consistent with
|
576 |
+
`self.transformer.config.max_text_seq_length` otherwise may lead to poor results.
|
577 |
+
|
578 |
+
Examples:
|
579 |
+
|
580 |
+
Returns:
|
581 |
+
[`~pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipelineOutput`] or `tuple`:
|
582 |
+
[`~pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipelineOutput`] if `return_dict` is True, otherwise a
|
583 |
+
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
584 |
+
"""
|
585 |
+
|
586 |
+
if num_frames > 49:
|
587 |
+
raise ValueError(
|
588 |
+
"The number of frames must be less than 49 for now due to static positional embeddings. This will be updated in the future to remove this limitation."
|
589 |
+
)
|
590 |
+
|
591 |
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
592 |
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
593 |
+
|
594 |
+
num_videos_per_prompt = 1
|
595 |
+
|
596 |
+
# 1. Check inputs. Raise error if not correct
|
597 |
+
self.check_inputs(
|
598 |
+
prompt,
|
599 |
+
height,
|
600 |
+
width,
|
601 |
+
negative_prompt,
|
602 |
+
callback_on_step_end_tensor_inputs,
|
603 |
+
prompt_embeds,
|
604 |
+
negative_prompt_embeds,
|
605 |
+
)
|
606 |
+
self._guidance_scale = guidance_scale
|
607 |
+
self._attention_kwargs = attention_kwargs
|
608 |
+
self._interrupt = False
|
609 |
+
|
610 |
+
# 2. Default call parameters
|
611 |
+
if prompt is not None and isinstance(prompt, str):
|
612 |
+
batch_size = 1
|
613 |
+
elif prompt is not None and isinstance(prompt, list):
|
614 |
+
batch_size = len(prompt)
|
615 |
+
else:
|
616 |
+
batch_size = prompt_embeds.shape[0]
|
617 |
+
|
618 |
+
device = self._execution_device
|
619 |
+
|
620 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
621 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
622 |
+
# corresponds to doing no classifier free guidance.
|
623 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
624 |
+
|
625 |
+
# 3. Encode input prompt
|
626 |
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
627 |
+
prompt,
|
628 |
+
negative_prompt,
|
629 |
+
do_classifier_free_guidance,
|
630 |
+
num_videos_per_prompt=num_videos_per_prompt,
|
631 |
+
prompt_embeds=prompt_embeds,
|
632 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
633 |
+
max_sequence_length=max_sequence_length,
|
634 |
+
device=device,
|
635 |
+
)
|
636 |
+
if do_classifier_free_guidance:
|
637 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
638 |
+
|
639 |
+
# 4. Prepare timesteps
|
640 |
+
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
641 |
+
self._num_timesteps = len(timesteps)
|
642 |
+
|
643 |
+
# 5. Prepare latents.
|
644 |
+
latent_channels = self.transformer.config.in_channels
|
645 |
+
latents = self.prepare_latents(
|
646 |
+
batch_size * num_videos_per_prompt,
|
647 |
+
latent_channels,
|
648 |
+
num_frames,
|
649 |
+
height,
|
650 |
+
width,
|
651 |
+
prompt_embeds.dtype,
|
652 |
+
device,
|
653 |
+
generator,
|
654 |
+
latents,
|
655 |
+
).repeat(1,2,1,1,1) # Luozhou
|
656 |
+
|
657 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
658 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
659 |
+
|
660 |
+
# 7. Create rotary embeds if required
|
661 |
+
image_rotary_emb = (
|
662 |
+
self._prepare_rotary_positional_embeddings(height, width, latents.size(1) // 2, device) # Luozhou
|
663 |
+
if self.transformer.config.use_rotary_positional_embeddings
|
664 |
+
else None
|
665 |
+
)
|
666 |
+
|
667 |
+
# 8. Denoising loop
|
668 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
669 |
+
|
670 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
671 |
+
# for DPM-solver++
|
672 |
+
old_pred_original_sample = None
|
673 |
+
for i, t in enumerate(timesteps):
|
674 |
+
if self.interrupt:
|
675 |
+
continue
|
676 |
+
|
677 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
678 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
679 |
+
|
680 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
681 |
+
timestep = t.expand(latent_model_input.shape[0])
|
682 |
+
|
683 |
+
# predict noise model_output
|
684 |
+
noise_pred = self.transformer(
|
685 |
+
hidden_states=latent_model_input,
|
686 |
+
encoder_hidden_states=prompt_embeds,
|
687 |
+
timestep=timestep,
|
688 |
+
image_rotary_emb=image_rotary_emb,
|
689 |
+
attention_kwargs=attention_kwargs,
|
690 |
+
return_dict=False,
|
691 |
+
)[0]
|
692 |
+
noise_pred = noise_pred.float()
|
693 |
+
|
694 |
+
# perform guidance
|
695 |
+
if use_dynamic_cfg:
|
696 |
+
self._guidance_scale = 1 + guidance_scale * (
|
697 |
+
(1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2
|
698 |
+
)
|
699 |
+
if do_classifier_free_guidance:
|
700 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
701 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
702 |
+
|
703 |
+
# compute the previous noisy sample x_t -> x_t-1
|
704 |
+
if not isinstance(self.scheduler, CogVideoXDPMScheduler):
|
705 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
706 |
+
else:
|
707 |
+
latents, old_pred_original_sample = self.scheduler.step(
|
708 |
+
noise_pred,
|
709 |
+
old_pred_original_sample,
|
710 |
+
t,
|
711 |
+
timesteps[i - 1] if i > 0 else None,
|
712 |
+
latents,
|
713 |
+
**extra_step_kwargs,
|
714 |
+
return_dict=False,
|
715 |
+
)
|
716 |
+
latents = latents.to(prompt_embeds.dtype)
|
717 |
+
|
718 |
+
# call the callback, if provided
|
719 |
+
if callback_on_step_end is not None:
|
720 |
+
callback_kwargs = {}
|
721 |
+
for k in callback_on_step_end_tensor_inputs:
|
722 |
+
callback_kwargs[k] = locals()[k]
|
723 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
724 |
+
|
725 |
+
latents = callback_outputs.pop("latents", latents)
|
726 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
727 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
728 |
+
|
729 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
730 |
+
progress_bar.update()
|
731 |
+
|
732 |
+
if not output_type == "latent":
|
733 |
+
video = self.decode_latents(latents)
|
734 |
+
video = self.video_processor.postprocess_video(video=video, output_type=output_type)
|
735 |
+
else:
|
736 |
+
video = latents
|
737 |
+
|
738 |
+
# Offload all models
|
739 |
+
self.maybe_free_model_hooks()
|
740 |
+
|
741 |
+
if not return_dict:
|
742 |
+
return (video,)
|
743 |
+
|
744 |
+
return CogVideoXPipelineOutput(frames=video)
|
CogVideoX/CogVideoX_rgba_utils.py
ADDED
@@ -0,0 +1,313 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from typing import Any, Dict, Optional, Tuple, Union
|
5 |
+
from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
|
6 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
7 |
+
from safetensors.torch import load_file
|
8 |
+
|
9 |
+
logger = logging.get_logger(__name__)
|
10 |
+
|
11 |
+
@torch.no_grad()
|
12 |
+
def decode_latents(pipe, latents):
|
13 |
+
video = pipe.decode_latents(latents)
|
14 |
+
video = pipe.video_processor.postprocess_video(video=video, output_type="np")
|
15 |
+
return video
|
16 |
+
|
17 |
+
def create_attention_mask(text_length: int, seq_length: int, device: torch.device, dtype: torch.dtype) -> torch.Tensor:
|
18 |
+
"""
|
19 |
+
Create an attention mask to block text from attending to alpha.
|
20 |
+
|
21 |
+
Args:
|
22 |
+
text_length: Length of the text sequence.
|
23 |
+
seq_length: Length of the other sequence.
|
24 |
+
device: The device where the mask will be stored.
|
25 |
+
dtype: The data type of the mask tensor.
|
26 |
+
|
27 |
+
Returns:
|
28 |
+
An attention mask tensor.
|
29 |
+
"""
|
30 |
+
total_length = text_length + seq_length
|
31 |
+
dense_mask = torch.ones((total_length, total_length), dtype=torch.bool)
|
32 |
+
dense_mask[:text_length, text_length + seq_length // 2:] = False
|
33 |
+
return dense_mask.to(device=device, dtype=dtype)
|
34 |
+
|
35 |
+
class RGBALoRACogVideoXAttnProcessor:
|
36 |
+
r"""
|
37 |
+
Processor for implementing scaled dot-product attention for the CogVideoX model.
|
38 |
+
It applies a rotary embedding on query and key vectors, but does not include spatial normalization.
|
39 |
+
"""
|
40 |
+
|
41 |
+
def __init__(self, device, dtype, attention_mask, lora_rank=128, lora_alpha=1.0, latent_dim=3072):
|
42 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
43 |
+
raise ImportError("CogVideoXAttnProcessor requires PyTorch 2.0 or later.")
|
44 |
+
|
45 |
+
# Initialize LoRA layers
|
46 |
+
self.lora_alpha = lora_alpha
|
47 |
+
self.lora_rank = lora_rank
|
48 |
+
|
49 |
+
# Helper function to create LoRA layers
|
50 |
+
def create_lora_layer(in_dim, mid_dim, out_dim):
|
51 |
+
return nn.Sequential(
|
52 |
+
nn.Linear(in_dim, mid_dim, bias=False, device=device, dtype=dtype),
|
53 |
+
nn.Linear(mid_dim, out_dim, bias=False, device=device, dtype=dtype)
|
54 |
+
)
|
55 |
+
|
56 |
+
self.to_q_lora = create_lora_layer(latent_dim, lora_rank, latent_dim)
|
57 |
+
self.to_k_lora = create_lora_layer(latent_dim, lora_rank, latent_dim)
|
58 |
+
self.to_v_lora = create_lora_layer(latent_dim, lora_rank, latent_dim)
|
59 |
+
self.to_out_lora = create_lora_layer(latent_dim, lora_rank, latent_dim)
|
60 |
+
|
61 |
+
# Store attention mask
|
62 |
+
self.attention_mask = attention_mask
|
63 |
+
|
64 |
+
def _apply_lora(self, hidden_states, seq_len, query, key, value, scaling):
|
65 |
+
"""Applies LoRA updates to query, key, and value tensors."""
|
66 |
+
query_delta = self.to_q_lora(hidden_states).to(query.device)
|
67 |
+
query[:, -seq_len // 2:, :] += query_delta[:, -seq_len // 2:, :] * scaling
|
68 |
+
|
69 |
+
key_delta = self.to_k_lora(hidden_states).to(key.device)
|
70 |
+
key[:, -seq_len // 2:, :] += key_delta[:, -seq_len // 2:, :] * scaling
|
71 |
+
|
72 |
+
value_delta = self.to_v_lora(hidden_states).to(value.device)
|
73 |
+
value[:, -seq_len // 2:, :] += value_delta[:, -seq_len // 2:, :] * scaling
|
74 |
+
|
75 |
+
return query, key, value
|
76 |
+
|
77 |
+
def _apply_rotary_embedding(self, query, key, image_rotary_emb, seq_len, text_seq_length, attn):
|
78 |
+
"""Applies rotary embeddings to query and key tensors."""
|
79 |
+
from diffusers.models.embeddings import apply_rotary_emb
|
80 |
+
|
81 |
+
# Apply rotary embedding to RGB and alpha sections
|
82 |
+
query[:, :, text_seq_length:text_seq_length + seq_len // 2] = apply_rotary_emb(
|
83 |
+
query[:, :, text_seq_length:text_seq_length + seq_len // 2], image_rotary_emb)
|
84 |
+
query[:, :, text_seq_length + seq_len // 2:] = apply_rotary_emb(
|
85 |
+
query[:, :, text_seq_length + seq_len // 2:], image_rotary_emb)
|
86 |
+
|
87 |
+
if not attn.is_cross_attention:
|
88 |
+
key[:, :, text_seq_length:text_seq_length + seq_len // 2] = apply_rotary_emb(
|
89 |
+
key[:, :, text_seq_length:text_seq_length + seq_len // 2], image_rotary_emb)
|
90 |
+
key[:, :, text_seq_length + seq_len // 2:] = apply_rotary_emb(
|
91 |
+
key[:, :, text_seq_length + seq_len // 2:], image_rotary_emb)
|
92 |
+
|
93 |
+
return query, key
|
94 |
+
|
95 |
+
def __call__(
|
96 |
+
self,
|
97 |
+
attn,
|
98 |
+
hidden_states: torch.Tensor,
|
99 |
+
encoder_hidden_states: torch.Tensor,
|
100 |
+
attention_mask: Optional[torch.Tensor] = None,
|
101 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
102 |
+
) -> torch.Tensor:
|
103 |
+
# Concatenate encoder and decoder hidden states
|
104 |
+
text_seq_length = encoder_hidden_states.size(1)
|
105 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
106 |
+
|
107 |
+
batch_size, sequence_length, _ = hidden_states.shape
|
108 |
+
seq_len = hidden_states.shape[1] - text_seq_length
|
109 |
+
scaling = self.lora_alpha / self.lora_rank
|
110 |
+
|
111 |
+
# Apply LoRA to query, key, value
|
112 |
+
query = attn.to_q(hidden_states)
|
113 |
+
key = attn.to_k(hidden_states)
|
114 |
+
value = attn.to_v(hidden_states)
|
115 |
+
|
116 |
+
query, key, value = self._apply_lora(hidden_states, seq_len, query, key, value, scaling)
|
117 |
+
|
118 |
+
# Reshape query, key, value for multi-head attention
|
119 |
+
inner_dim = key.shape[-1]
|
120 |
+
head_dim = inner_dim // attn.heads
|
121 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
122 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
123 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
124 |
+
|
125 |
+
# Normalize query and key if required
|
126 |
+
if attn.norm_q is not None:
|
127 |
+
query = attn.norm_q(query)
|
128 |
+
if attn.norm_k is not None:
|
129 |
+
key = attn.norm_k(key)
|
130 |
+
|
131 |
+
# Apply rotary embeddings if provided
|
132 |
+
if image_rotary_emb is not None:
|
133 |
+
query, key = self._apply_rotary_embedding(query, key, image_rotary_emb, seq_len, text_seq_length, attn)
|
134 |
+
|
135 |
+
# Compute scaled dot-product attention
|
136 |
+
hidden_states = F.scaled_dot_product_attention(
|
137 |
+
query, key, value, attn_mask=self.attention_mask, dropout_p=0.0, is_causal=False
|
138 |
+
)
|
139 |
+
|
140 |
+
# Reshape the output tensor back to the original shape
|
141 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
142 |
+
|
143 |
+
# Apply linear projection and LoRA to the output
|
144 |
+
original_hidden_states = attn.to_out[0](hidden_states)
|
145 |
+
hidden_states_delta = self.to_out_lora(hidden_states).to(hidden_states.device)
|
146 |
+
original_hidden_states[:, -seq_len // 2:, :] += hidden_states_delta[:, -seq_len // 2:, :] * scaling
|
147 |
+
|
148 |
+
# Apply dropout
|
149 |
+
hidden_states = attn.to_out[1](original_hidden_states)
|
150 |
+
|
151 |
+
# Split back into encoder and decoder hidden states
|
152 |
+
encoder_hidden_states, hidden_states = hidden_states.split(
|
153 |
+
[text_seq_length, hidden_states.size(1) - text_seq_length], dim=1
|
154 |
+
)
|
155 |
+
|
156 |
+
return hidden_states, encoder_hidden_states
|
157 |
+
|
158 |
+
def prepare_for_rgba_inference(
|
159 |
+
model, rgba_weights_path: str, device: torch.device, dtype: torch.dtype,
|
160 |
+
lora_rank: int = 128, lora_alpha: float = 1.0, text_length: int = 226, seq_length: int = 35100
|
161 |
+
):
|
162 |
+
def load_lora_sequential_weights(lora_layer, lora_layers, prefix):
|
163 |
+
lora_layer[0].load_state_dict({'weight': lora_layers[f"{prefix}.lora_A.weight"]})
|
164 |
+
lora_layer[1].load_state_dict({'weight': lora_layers[f"{prefix}.lora_B.weight"]})
|
165 |
+
|
166 |
+
|
167 |
+
rgba_weights = load_file(rgba_weights_path)
|
168 |
+
aux_emb = rgba_weights['domain_emb']
|
169 |
+
|
170 |
+
attention_mask = create_attention_mask(text_length, seq_length, device, dtype)
|
171 |
+
attn_procs = {}
|
172 |
+
|
173 |
+
for name in model.attn_processors.keys():
|
174 |
+
attn_processor = RGBALoRACogVideoXAttnProcessor(
|
175 |
+
device=device, dtype=dtype, attention_mask=attention_mask,
|
176 |
+
lora_rank=lora_rank, lora_alpha=lora_alpha
|
177 |
+
)
|
178 |
+
|
179 |
+
index = name.split('.')[1]
|
180 |
+
base_prefix = f'transformer.transformer_blocks.{index}.attn1'
|
181 |
+
|
182 |
+
for lora_layer, prefix in [
|
183 |
+
(attn_processor.to_q_lora, f'{base_prefix}.to_q'),
|
184 |
+
(attn_processor.to_k_lora, f'{base_prefix}.to_k'),
|
185 |
+
(attn_processor.to_v_lora, f'{base_prefix}.to_v'),
|
186 |
+
(attn_processor.to_out_lora, f'{base_prefix}.to_out.0'),
|
187 |
+
]:
|
188 |
+
load_lora_sequential_weights(lora_layer, rgba_weights, prefix)
|
189 |
+
|
190 |
+
attn_procs[name] = attn_processor
|
191 |
+
|
192 |
+
model.set_attn_processor(attn_procs)
|
193 |
+
|
194 |
+
def custom_forward(self):
|
195 |
+
def forward(
|
196 |
+
hidden_states: torch.Tensor,
|
197 |
+
encoder_hidden_states: torch.Tensor,
|
198 |
+
timestep: Union[int, float, torch.LongTensor],
|
199 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
200 |
+
ofs: Optional[Union[int, float, torch.LongTensor]] = None,
|
201 |
+
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
202 |
+
attention_kwargs: Optional[Dict[str, Any]] = None,
|
203 |
+
return_dict: bool = True,
|
204 |
+
):
|
205 |
+
if attention_kwargs is not None:
|
206 |
+
attention_kwargs = attention_kwargs.copy()
|
207 |
+
lora_scale = attention_kwargs.pop("scale", 1.0)
|
208 |
+
else:
|
209 |
+
lora_scale = 1.0
|
210 |
+
|
211 |
+
if USE_PEFT_BACKEND:
|
212 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
213 |
+
scale_lora_layers(self, lora_scale)
|
214 |
+
else:
|
215 |
+
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
|
216 |
+
logger.warning(
|
217 |
+
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
|
218 |
+
)
|
219 |
+
|
220 |
+
batch_size, num_frames, channels, height, width = hidden_states.shape
|
221 |
+
|
222 |
+
# 1. Time embedding
|
223 |
+
timesteps = timestep
|
224 |
+
t_emb = self.time_proj(timesteps)
|
225 |
+
|
226 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
227 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
228 |
+
# there might be better ways to encapsulate this.
|
229 |
+
t_emb = t_emb.to(dtype=hidden_states.dtype)
|
230 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
231 |
+
|
232 |
+
if self.ofs_embedding is not None:
|
233 |
+
ofs_emb = self.ofs_proj(ofs)
|
234 |
+
ofs_emb = ofs_emb.to(dtype=hidden_states.dtype)
|
235 |
+
ofs_emb = self.ofs_embedding(ofs_emb)
|
236 |
+
emb = emb + ofs_emb
|
237 |
+
|
238 |
+
# 2. Patch embedding
|
239 |
+
hidden_states = self.patch_embed(encoder_hidden_states, hidden_states)
|
240 |
+
hidden_states = self.embedding_dropout(hidden_states)
|
241 |
+
|
242 |
+
text_seq_length = encoder_hidden_states.shape[1]
|
243 |
+
encoder_hidden_states = hidden_states[:, :text_seq_length]
|
244 |
+
hidden_states = hidden_states[:, text_seq_length:]
|
245 |
+
|
246 |
+
hidden_states[:, hidden_states.size(1) // 2:, :] += aux_emb.expand(batch_size, -1, -1).to(hidden_states.device, dtype=hidden_states.dtype)
|
247 |
+
|
248 |
+
# 3. Transformer blocks
|
249 |
+
for i, block in enumerate(self.transformer_blocks):
|
250 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
251 |
+
|
252 |
+
def create_custom_forward(module):
|
253 |
+
def custom_forward(*inputs):
|
254 |
+
return module(*inputs)
|
255 |
+
|
256 |
+
return custom_forward
|
257 |
+
|
258 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
259 |
+
hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint(
|
260 |
+
create_custom_forward(block),
|
261 |
+
hidden_states,
|
262 |
+
encoder_hidden_states,
|
263 |
+
emb,
|
264 |
+
image_rotary_emb,
|
265 |
+
**ckpt_kwargs,
|
266 |
+
)
|
267 |
+
else:
|
268 |
+
hidden_states, encoder_hidden_states = block(
|
269 |
+
hidden_states=hidden_states,
|
270 |
+
encoder_hidden_states=encoder_hidden_states,
|
271 |
+
temb=emb,
|
272 |
+
image_rotary_emb=image_rotary_emb,
|
273 |
+
)
|
274 |
+
|
275 |
+
if not self.config.use_rotary_positional_embeddings:
|
276 |
+
# CogVideoX-2B
|
277 |
+
hidden_states = self.norm_final(hidden_states)
|
278 |
+
else:
|
279 |
+
# CogVideoX-5B
|
280 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
281 |
+
hidden_states = self.norm_final(hidden_states)
|
282 |
+
hidden_states = hidden_states[:, text_seq_length:]
|
283 |
+
|
284 |
+
# 4. Final block
|
285 |
+
hidden_states = self.norm_out(hidden_states, temb=emb)
|
286 |
+
hidden_states = self.proj_out(hidden_states)
|
287 |
+
|
288 |
+
# 5. Unpatchify
|
289 |
+
p = self.config.patch_size
|
290 |
+
p_t = self.config.patch_size_t
|
291 |
+
|
292 |
+
if p_t is None:
|
293 |
+
output = hidden_states.reshape(batch_size, num_frames, height // p, width // p, -1, p, p)
|
294 |
+
output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4)
|
295 |
+
else:
|
296 |
+
output = hidden_states.reshape(
|
297 |
+
batch_size, (num_frames + p_t - 1) // p_t, height // p, width // p, -1, p_t, p, p
|
298 |
+
)
|
299 |
+
output = output.permute(0, 1, 5, 4, 2, 6, 3, 7).flatten(6, 7).flatten(4, 5).flatten(1, 2)
|
300 |
+
|
301 |
+
if USE_PEFT_BACKEND:
|
302 |
+
# remove `lora_scale` from each PEFT layer
|
303 |
+
unscale_lora_layers(self, lora_scale)
|
304 |
+
|
305 |
+
if not return_dict:
|
306 |
+
return (output,)
|
307 |
+
return Transformer2DModelOutput(sample=output)
|
308 |
+
|
309 |
+
|
310 |
+
return forward
|
311 |
+
|
312 |
+
model.forward = custom_forward(model)
|
313 |
+
|
CogVideoX/CogVideoX_test.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from diffusers import CogVideoXImageToVideoPipeline
|
3 |
+
from diffusers.utils import export_to_video, load_image
|
4 |
+
|
5 |
+
prompt = "A dragon is flipping its wings"
|
6 |
+
image = load_image(image="/hpc2hdd/home/lwang592/projects/CogVideo/sat/configs/i2v/Dragon.jpg")
|
7 |
+
pipe = CogVideoXImageToVideoPipeline.from_pretrained(
|
8 |
+
"THUDM/CogVideoX-5b-I2V",
|
9 |
+
torch_dtype=torch.bfloat16
|
10 |
+
)
|
11 |
+
|
12 |
+
pipe.enable_sequential_cpu_offload()
|
13 |
+
pipe.vae.enable_tiling()
|
14 |
+
pipe.vae.enable_slicing()
|
15 |
+
|
16 |
+
video = pipe(
|
17 |
+
prompt=prompt,
|
18 |
+
image=image,
|
19 |
+
num_videos_per_prompt=1,
|
20 |
+
num_inference_steps=50,
|
21 |
+
num_frames=13,
|
22 |
+
guidance_scale=6,
|
23 |
+
generator=torch.Generator(device="cuda").manual_seed(42),
|
24 |
+
).frames[0]
|
25 |
+
|
26 |
+
export_to_video(video, "output.mp4", fps=8)
|