Felguk commited on
Commit
44820d8
·
verified ·
1 Parent(s): 6690bce

Upload 4 files

Browse files
CogVideoX/CogVideoX_cli.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ from diffusers import CogVideoXDPMScheduler
4
+ from pipeline_rgba import CogVideoXPipeline
5
+ from diffusers.utils import export_to_video
6
+ import argparse
7
+ import numpy as np
8
+ from rgba_utils import *
9
+
10
+ def main(args):
11
+ # 1. load pipeline
12
+ pipe = CogVideoXPipeline.from_pretrained(args.model_path, torch_dtype=torch.bfloat16)
13
+ pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
14
+ pipe.enable_sequential_cpu_offload()
15
+ pipe.vae.enable_slicing()
16
+ pipe.vae.enable_tiling()
17
+
18
+
19
+ # 2. define prompt and arguments
20
+ pipeline_args = {
21
+ "prompt": args.prompt,
22
+ "guidance_scale": args.guidance_scale,
23
+ "num_inference_steps": args.num_inference_steps,
24
+ "height": args.height,
25
+ "width": args.width,
26
+ "num_frames": args.num_frames,
27
+ "output_type": "latent",
28
+ "use_dynamic_cfg":True,
29
+ }
30
+
31
+ # 3. prepare rgbx utils
32
+ # breakpoint()
33
+ seq_length = 2 * (
34
+ (args.height // pipe.vae_scale_factor_spatial // 2)
35
+ * (args.width // pipe.vae_scale_factor_spatial // 2)
36
+ * ((args.num_frames - 1) // pipe.vae_scale_factor_temporal + 1)
37
+ )
38
+ # seq_length = 35100
39
+
40
+ prepare_for_rgba_inference(
41
+ pipe.transformer,
42
+ rgba_weights_path=args.lora_path,
43
+ device="cuda",
44
+ dtype=torch.bfloat16,
45
+ text_length=226,
46
+ seq_length=seq_length, # this is for the creation of attention mask.
47
+ )
48
+
49
+ # 4. run inference
50
+ generator = torch.manual_seed(args.seed) if args.seed else None
51
+ frames_latents = pipe(**pipeline_args, generator=generator).frames
52
+
53
+ frames_latents_rgb, frames_latents_alpha = frames_latents.chunk(2, dim=1)
54
+
55
+ frames_rgb = decode_latents(pipe, frames_latents_rgb)
56
+ frames_alpha = decode_latents(pipe, frames_latents_alpha)
57
+
58
+
59
+ pooled_alpha = np.max(frames_alpha, axis=-1, keepdims=True)
60
+ frames_alpha_pooled = np.repeat(pooled_alpha, 3, axis=-1)
61
+ premultiplied_rgb = frames_rgb * frames_alpha_pooled
62
+
63
+ if os.path.exists(args.output_path) == False:
64
+ os.makedirs(args.output_path)
65
+
66
+ export_to_video(premultiplied_rgb[0], os.path.join(args.output_path, "rgb.mp4"), fps=args.fps)
67
+ export_to_video(frames_alpha[0], os.path.join(args.output_path, "alpha.mp4"), fps=args.fps)
68
+
69
+
70
+ if __name__ == "__main__":
71
+ parser = argparse.ArgumentParser(description="Generate a video from a text prompt")
72
+ parser.add_argument("--prompt", type=str, required=True, help="The description of the video to be generated")
73
+ parser.add_argument("--lora_path", type=str, default="/hpc2hdd/home/lwang592/projects/CogVideo/sat/outputs/training/ckpts-5b-attn_rebias-partial_lora-8gpu-wo_t2a/lora-rgba-12-21-19-11/5000/rgba_lora.safetensors", help="The path of the LoRA weights to be used")
74
+
75
+ parser.add_argument(
76
+ "--model_path", type=str, default="THUDM/CogVideoX-5B", help="Path of the pre-trained model use"
77
+ )
78
+
79
+
80
+ parser.add_argument("--output_path", type=str, default="./output", help="The path save generated video")
81
+ parser.add_argument("--guidance_scale", type=float, default=6.0, help="The scale for classifier-free guidance")
82
+ parser.add_argument("--num_inference_steps", type=int, default=50, help="Inference steps")
83
+ parser.add_argument("--num_frames", type=int, default=49, help="Number of steps for the inference process")
84
+ parser.add_argument("--width", type=int, default=720, help="Number of steps for the inference process")
85
+ parser.add_argument("--height", type=int, default=480, help="Number of steps for the inference process")
86
+ parser.add_argument("--fps", type=int, default=8, help="Number of steps for the inference process")
87
+ parser.add_argument("--seed", type=int, default=None, help="The seed for reproducibility")
88
+ args = parser.parse_args()
89
+
90
+ main(args)
CogVideoX/CogVideoX_pipeline_rgba.py ADDED
@@ -0,0 +1,744 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team.
2
+ # All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import inspect
17
+ import math
18
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
19
+
20
+ import torch
21
+ from transformers import T5EncoderModel, T5Tokenizer
22
+
23
+ from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
24
+ from diffusers.loaders import CogVideoXLoraLoaderMixin
25
+ from diffusers.models import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel
26
+ from diffusers.models.embeddings import get_3d_rotary_pos_embed
27
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline
28
+ from diffusers.schedulers import CogVideoXDDIMScheduler, CogVideoXDPMScheduler
29
+ from diffusers.utils import logging, replace_example_docstring
30
+ from diffusers.utils.torch_utils import randn_tensor
31
+ from diffusers.video_processor import VideoProcessor
32
+ from diffusers.pipelines.cogvideo.pipeline_output import CogVideoXPipelineOutput
33
+
34
+
35
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
36
+
37
+
38
+ EXAMPLE_DOC_STRING = """
39
+ Examples:
40
+ ```python
41
+ >>> import torch
42
+ >>> from diffusers import CogVideoXPipeline
43
+ >>> from diffusers.utils import export_to_video
44
+
45
+ >>> # Models: "THUDM/CogVideoX-2b" or "THUDM/CogVideoX-5b"
46
+ >>> pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-2b", torch_dtype=torch.float16).to("cuda")
47
+ >>> prompt = (
48
+ ... "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. "
49
+ ... "The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other "
50
+ ... "pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, "
51
+ ... "casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. "
52
+ ... "The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical "
53
+ ... "atmosphere of this unique musical performance."
54
+ ... )
55
+ >>> video = pipe(prompt=prompt, guidance_scale=6, num_inference_steps=50).frames[0]
56
+ >>> export_to_video(video, "output.mp4", fps=8)
57
+ ```
58
+ """
59
+
60
+
61
+ # Similar to diffusers.pipelines.hunyuandit.pipeline_hunyuandit.get_resize_crop_region_for_grid
62
+ def get_resize_crop_region_for_grid(src, tgt_width, tgt_height):
63
+ tw = tgt_width
64
+ th = tgt_height
65
+ h, w = src
66
+ r = h / w
67
+ if r > (th / tw):
68
+ resize_height = th
69
+ resize_width = int(round(th / h * w))
70
+ else:
71
+ resize_width = tw
72
+ resize_height = int(round(tw / w * h))
73
+
74
+ crop_top = int(round((th - resize_height) / 2.0))
75
+ crop_left = int(round((tw - resize_width) / 2.0))
76
+
77
+ return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)
78
+
79
+
80
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
81
+ def retrieve_timesteps(
82
+ scheduler,
83
+ num_inference_steps: Optional[int] = None,
84
+ device: Optional[Union[str, torch.device]] = None,
85
+ timesteps: Optional[List[int]] = None,
86
+ sigmas: Optional[List[float]] = None,
87
+ **kwargs,
88
+ ):
89
+ r"""
90
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
91
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
92
+
93
+ Args:
94
+ scheduler (`SchedulerMixin`):
95
+ The scheduler to get timesteps from.
96
+ num_inference_steps (`int`):
97
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
98
+ must be `None`.
99
+ device (`str` or `torch.device`, *optional*):
100
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
101
+ timesteps (`List[int]`, *optional*):
102
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
103
+ `num_inference_steps` and `sigmas` must be `None`.
104
+ sigmas (`List[float]`, *optional*):
105
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
106
+ `num_inference_steps` and `timesteps` must be `None`.
107
+
108
+ Returns:
109
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
110
+ second element is the number of inference steps.
111
+ """
112
+ if timesteps is not None and sigmas is not None:
113
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
114
+ if timesteps is not None:
115
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
116
+ if not accepts_timesteps:
117
+ raise ValueError(
118
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
119
+ f" timestep schedules. Please check whether you are using the correct scheduler."
120
+ )
121
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
122
+ timesteps = scheduler.timesteps
123
+ num_inference_steps = len(timesteps)
124
+ elif sigmas is not None:
125
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
126
+ if not accept_sigmas:
127
+ raise ValueError(
128
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
129
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
130
+ )
131
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
132
+ timesteps = scheduler.timesteps
133
+ num_inference_steps = len(timesteps)
134
+ else:
135
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
136
+ timesteps = scheduler.timesteps
137
+ return timesteps, num_inference_steps
138
+
139
+
140
+ class CogVideoXPipeline(DiffusionPipeline, CogVideoXLoraLoaderMixin):
141
+ r"""
142
+ Pipeline for text-to-video generation using CogVideoX.
143
+
144
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
145
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
146
+
147
+ Args:
148
+ vae ([`AutoencoderKL`]):
149
+ Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
150
+ text_encoder ([`T5EncoderModel`]):
151
+ Frozen text-encoder. CogVideoX uses
152
+ [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel); specifically the
153
+ [t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
154
+ tokenizer (`T5Tokenizer`):
155
+ Tokenizer of class
156
+ [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
157
+ transformer ([`CogVideoXTransformer3DModel`]):
158
+ A text conditioned `CogVideoXTransformer3DModel` to denoise the encoded video latents.
159
+ scheduler ([`SchedulerMixin`]):
160
+ A scheduler to be used in combination with `transformer` to denoise the encoded video latents.
161
+ """
162
+
163
+ _optional_components = []
164
+ model_cpu_offload_seq = "text_encoder->transformer->vae"
165
+
166
+ _callback_tensor_inputs = [
167
+ "latents",
168
+ "prompt_embeds",
169
+ "negative_prompt_embeds",
170
+ ]
171
+
172
+ def __init__(
173
+ self,
174
+ tokenizer: T5Tokenizer,
175
+ text_encoder: T5EncoderModel,
176
+ vae: AutoencoderKLCogVideoX,
177
+ transformer: CogVideoXTransformer3DModel,
178
+ scheduler: Union[CogVideoXDDIMScheduler, CogVideoXDPMScheduler],
179
+ ):
180
+ super().__init__()
181
+
182
+ self.register_modules(
183
+ tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
184
+ )
185
+ self.vae_scale_factor_spatial = (
186
+ 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
187
+ )
188
+ self.vae_scale_factor_temporal = (
189
+ self.vae.config.temporal_compression_ratio if hasattr(self, "vae") and self.vae is not None else 4
190
+ )
191
+ self.vae_scaling_factor_image = (
192
+ self.vae.config.scaling_factor if hasattr(self, "vae") and self.vae is not None else 0.7
193
+ )
194
+
195
+ self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
196
+
197
+ def _get_t5_prompt_embeds(
198
+ self,
199
+ prompt: Union[str, List[str]] = None,
200
+ num_videos_per_prompt: int = 1,
201
+ max_sequence_length: int = 226,
202
+ device: Optional[torch.device] = None,
203
+ dtype: Optional[torch.dtype] = None,
204
+ ):
205
+ device = device or self._execution_device
206
+ dtype = dtype or self.text_encoder.dtype
207
+
208
+ prompt = [prompt] if isinstance(prompt, str) else prompt
209
+ batch_size = len(prompt)
210
+
211
+ text_inputs = self.tokenizer(
212
+ prompt,
213
+ padding="max_length",
214
+ max_length=max_sequence_length,
215
+ truncation=True,
216
+ add_special_tokens=True,
217
+ return_tensors="pt",
218
+ )
219
+ text_input_ids = text_inputs.input_ids
220
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
221
+
222
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
223
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1])
224
+ logger.warning(
225
+ "The following part of your input was truncated because `max_sequence_length` is set to "
226
+ f" {max_sequence_length} tokens: {removed_text}"
227
+ )
228
+
229
+ prompt_embeds = self.text_encoder(text_input_ids.to(device))[0]
230
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
231
+
232
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
233
+ _, seq_len, _ = prompt_embeds.shape
234
+ prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
235
+ prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
236
+
237
+ return prompt_embeds
238
+
239
+ def encode_prompt(
240
+ self,
241
+ prompt: Union[str, List[str]],
242
+ negative_prompt: Optional[Union[str, List[str]]] = None,
243
+ do_classifier_free_guidance: bool = True,
244
+ num_videos_per_prompt: int = 1,
245
+ prompt_embeds: Optional[torch.Tensor] = None,
246
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
247
+ max_sequence_length: int = 226,
248
+ device: Optional[torch.device] = None,
249
+ dtype: Optional[torch.dtype] = None,
250
+ ):
251
+ r"""
252
+ Encodes the prompt into text encoder hidden states.
253
+
254
+ Args:
255
+ prompt (`str` or `List[str]`, *optional*):
256
+ prompt to be encoded
257
+ negative_prompt (`str` or `List[str]`, *optional*):
258
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
259
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
260
+ less than `1`).
261
+ do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
262
+ Whether to use classifier free guidance or not.
263
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
264
+ Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
265
+ prompt_embeds (`torch.Tensor`, *optional*):
266
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
267
+ provided, text embeddings will be generated from `prompt` input argument.
268
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
269
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
270
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
271
+ argument.
272
+ device: (`torch.device`, *optional*):
273
+ torch device
274
+ dtype: (`torch.dtype`, *optional*):
275
+ torch dtype
276
+ """
277
+ device = device or self._execution_device
278
+
279
+ prompt = [prompt] if isinstance(prompt, str) else prompt
280
+ if prompt is not None:
281
+ batch_size = len(prompt)
282
+ else:
283
+ batch_size = prompt_embeds.shape[0]
284
+
285
+ if prompt_embeds is None:
286
+ prompt_embeds = self._get_t5_prompt_embeds(
287
+ prompt=prompt,
288
+ num_videos_per_prompt=num_videos_per_prompt,
289
+ max_sequence_length=max_sequence_length,
290
+ device=device,
291
+ dtype=dtype,
292
+ )
293
+
294
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
295
+ negative_prompt = negative_prompt or ""
296
+ negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
297
+
298
+ if prompt is not None and type(prompt) is not type(negative_prompt):
299
+ raise TypeError(
300
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
301
+ f" {type(prompt)}."
302
+ )
303
+ elif batch_size != len(negative_prompt):
304
+ raise ValueError(
305
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
306
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
307
+ " the batch size of `prompt`."
308
+ )
309
+
310
+ negative_prompt_embeds = self._get_t5_prompt_embeds(
311
+ prompt=negative_prompt,
312
+ num_videos_per_prompt=num_videos_per_prompt,
313
+ max_sequence_length=max_sequence_length,
314
+ device=device,
315
+ dtype=dtype,
316
+ )
317
+
318
+ return prompt_embeds, negative_prompt_embeds
319
+
320
+ def prepare_latents(
321
+ self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None
322
+ ):
323
+ if isinstance(generator, list) and len(generator) != batch_size:
324
+ raise ValueError(
325
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
326
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
327
+ )
328
+
329
+ shape = (
330
+ batch_size,
331
+ (num_frames - 1) // self.vae_scale_factor_temporal + 1,
332
+ num_channels_latents,
333
+ height // self.vae_scale_factor_spatial,
334
+ width // self.vae_scale_factor_spatial,
335
+ )
336
+
337
+ if latents is None:
338
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
339
+ else:
340
+ latents = latents.to(device)
341
+
342
+ # scale the initial noise by the standard deviation required by the scheduler
343
+ latents = latents * self.scheduler.init_noise_sigma
344
+ return latents
345
+
346
+ def decode_latents(self, latents: torch.Tensor) -> torch.Tensor:
347
+ latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width]
348
+ latents = 1 / self.vae_scaling_factor_image * latents
349
+
350
+ frames = self.vae.decode(latents).sample
351
+ return frames
352
+
353
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
354
+ def prepare_extra_step_kwargs(self, generator, eta):
355
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
356
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
357
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
358
+ # and should be between [0, 1]
359
+
360
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
361
+ extra_step_kwargs = {}
362
+ if accepts_eta:
363
+ extra_step_kwargs["eta"] = eta
364
+
365
+ # check if the scheduler accepts generator
366
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
367
+ if accepts_generator:
368
+ extra_step_kwargs["generator"] = generator
369
+ return extra_step_kwargs
370
+
371
+ # Copied from diffusers.pipelines.latte.pipeline_latte.LattePipeline.check_inputs
372
+ def check_inputs(
373
+ self,
374
+ prompt,
375
+ height,
376
+ width,
377
+ negative_prompt,
378
+ callback_on_step_end_tensor_inputs,
379
+ prompt_embeds=None,
380
+ negative_prompt_embeds=None,
381
+ ):
382
+ if height % 8 != 0 or width % 8 != 0:
383
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
384
+
385
+ if callback_on_step_end_tensor_inputs is not None and not all(
386
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
387
+ ):
388
+ raise ValueError(
389
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
390
+ )
391
+ if prompt is not None and prompt_embeds is not None:
392
+ raise ValueError(
393
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
394
+ " only forward one of the two."
395
+ )
396
+ elif prompt is None and prompt_embeds is None:
397
+ raise ValueError(
398
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
399
+ )
400
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
401
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
402
+
403
+ if prompt is not None and negative_prompt_embeds is not None:
404
+ raise ValueError(
405
+ f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
406
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
407
+ )
408
+
409
+ if negative_prompt is not None and negative_prompt_embeds is not None:
410
+ raise ValueError(
411
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
412
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
413
+ )
414
+
415
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
416
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
417
+ raise ValueError(
418
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
419
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
420
+ f" {negative_prompt_embeds.shape}."
421
+ )
422
+
423
+ def fuse_qkv_projections(self) -> None:
424
+ r"""Enables fused QKV projections."""
425
+ self.fusing_transformer = True
426
+ self.transformer.fuse_qkv_projections()
427
+
428
+ def unfuse_qkv_projections(self) -> None:
429
+ r"""Disable QKV projection fusion if enabled."""
430
+ if not self.fusing_transformer:
431
+ logger.warning("The Transformer was not initially fused for QKV projections. Doing nothing.")
432
+ else:
433
+ self.transformer.unfuse_qkv_projections()
434
+ self.fusing_transformer = False
435
+
436
+ def _prepare_rotary_positional_embeddings(
437
+ self,
438
+ height: int,
439
+ width: int,
440
+ num_frames: int,
441
+ device: torch.device,
442
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
443
+ grid_height = height // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
444
+ grid_width = width // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
445
+ base_size_width = 720 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
446
+ base_size_height = 480 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
447
+
448
+ grid_crops_coords = get_resize_crop_region_for_grid(
449
+ (grid_height, grid_width), base_size_width, base_size_height
450
+ )
451
+ freqs_cos, freqs_sin = get_3d_rotary_pos_embed(
452
+ embed_dim=self.transformer.config.attention_head_dim,
453
+ crops_coords=grid_crops_coords,
454
+ grid_size=(grid_height, grid_width),
455
+ temporal_size=num_frames,
456
+ )
457
+
458
+ freqs_cos = freqs_cos.to(device=device)
459
+ freqs_sin = freqs_sin.to(device=device)
460
+ return freqs_cos, freqs_sin
461
+
462
+ @property
463
+ def guidance_scale(self):
464
+ return self._guidance_scale
465
+
466
+ @property
467
+ def num_timesteps(self):
468
+ return self._num_timesteps
469
+
470
+ @property
471
+ def attention_kwargs(self):
472
+ return self._attention_kwargs
473
+
474
+ @property
475
+ def interrupt(self):
476
+ return self._interrupt
477
+
478
+ @torch.no_grad()
479
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
480
+ def __call__(
481
+ self,
482
+ prompt: Optional[Union[str, List[str]]] = None,
483
+ negative_prompt: Optional[Union[str, List[str]]] = None,
484
+ height: int = 480,
485
+ width: int = 720,
486
+ num_frames: int = 49,
487
+ num_inference_steps: int = 50,
488
+ timesteps: Optional[List[int]] = None,
489
+ guidance_scale: float = 6,
490
+ use_dynamic_cfg: bool = False,
491
+ num_videos_per_prompt: int = 1,
492
+ eta: float = 0.0,
493
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
494
+ latents: Optional[torch.FloatTensor] = None,
495
+ prompt_embeds: Optional[torch.FloatTensor] = None,
496
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
497
+ output_type: str = "pil",
498
+ return_dict: bool = True,
499
+ attention_kwargs: Optional[Dict[str, Any]] = None,
500
+ callback_on_step_end: Optional[
501
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
502
+ ] = None,
503
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
504
+ max_sequence_length: int = 226,
505
+ ) -> Union[CogVideoXPipelineOutput, Tuple]:
506
+ """
507
+ Function invoked when calling the pipeline for generation.
508
+
509
+ Args:
510
+ prompt (`str` or `List[str]`, *optional*):
511
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
512
+ instead.
513
+ negative_prompt (`str` or `List[str]`, *optional*):
514
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
515
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
516
+ less than `1`).
517
+ height (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial):
518
+ The height in pixels of the generated image. This is set to 480 by default for the best results.
519
+ width (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial):
520
+ The width in pixels of the generated image. This is set to 720 by default for the best results.
521
+ num_frames (`int`, defaults to `48`):
522
+ Number of frames to generate. Must be divisible by self.vae_scale_factor_temporal. Generated video will
523
+ contain 1 extra frame because CogVideoX is conditioned with (num_seconds * fps + 1) frames where
524
+ num_seconds is 6 and fps is 8. However, since videos can be saved at any fps, the only condition that
525
+ needs to be satisfied is that of divisibility mentioned above.
526
+ num_inference_steps (`int`, *optional*, defaults to 50):
527
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
528
+ expense of slower inference.
529
+ timesteps (`List[int]`, *optional*):
530
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
531
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
532
+ passed will be used. Must be in descending order.
533
+ guidance_scale (`float`, *optional*, defaults to 7.0):
534
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
535
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
536
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
537
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
538
+ usually at the expense of lower image quality.
539
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
540
+ The number of videos to generate per prompt.
541
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
542
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
543
+ to make generation deterministic.
544
+ latents (`torch.FloatTensor`, *optional*):
545
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
546
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
547
+ tensor will ge generated by sampling using the supplied random `generator`.
548
+ prompt_embeds (`torch.FloatTensor`, *optional*):
549
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
550
+ provided, text embeddings will be generated from `prompt` input argument.
551
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
552
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
553
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
554
+ argument.
555
+ output_type (`str`, *optional*, defaults to `"pil"`):
556
+ The output format of the generate image. Choose between
557
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
558
+ return_dict (`bool`, *optional*, defaults to `True`):
559
+ Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
560
+ of a plain tuple.
561
+ attention_kwargs (`dict`, *optional*):
562
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
563
+ `self.processor` in
564
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
565
+ callback_on_step_end (`Callable`, *optional*):
566
+ A function that calls at the end of each denoising steps during the inference. The function is called
567
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
568
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
569
+ `callback_on_step_end_tensor_inputs`.
570
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
571
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
572
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
573
+ `._callback_tensor_inputs` attribute of your pipeline class.
574
+ max_sequence_length (`int`, defaults to `226`):
575
+ Maximum sequence length in encoded prompt. Must be consistent with
576
+ `self.transformer.config.max_text_seq_length` otherwise may lead to poor results.
577
+
578
+ Examples:
579
+
580
+ Returns:
581
+ [`~pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipelineOutput`] or `tuple`:
582
+ [`~pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipelineOutput`] if `return_dict` is True, otherwise a
583
+ `tuple`. When returning a tuple, the first element is a list with the generated images.
584
+ """
585
+
586
+ if num_frames > 49:
587
+ raise ValueError(
588
+ "The number of frames must be less than 49 for now due to static positional embeddings. This will be updated in the future to remove this limitation."
589
+ )
590
+
591
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
592
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
593
+
594
+ num_videos_per_prompt = 1
595
+
596
+ # 1. Check inputs. Raise error if not correct
597
+ self.check_inputs(
598
+ prompt,
599
+ height,
600
+ width,
601
+ negative_prompt,
602
+ callback_on_step_end_tensor_inputs,
603
+ prompt_embeds,
604
+ negative_prompt_embeds,
605
+ )
606
+ self._guidance_scale = guidance_scale
607
+ self._attention_kwargs = attention_kwargs
608
+ self._interrupt = False
609
+
610
+ # 2. Default call parameters
611
+ if prompt is not None and isinstance(prompt, str):
612
+ batch_size = 1
613
+ elif prompt is not None and isinstance(prompt, list):
614
+ batch_size = len(prompt)
615
+ else:
616
+ batch_size = prompt_embeds.shape[0]
617
+
618
+ device = self._execution_device
619
+
620
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
621
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
622
+ # corresponds to doing no classifier free guidance.
623
+ do_classifier_free_guidance = guidance_scale > 1.0
624
+
625
+ # 3. Encode input prompt
626
+ prompt_embeds, negative_prompt_embeds = self.encode_prompt(
627
+ prompt,
628
+ negative_prompt,
629
+ do_classifier_free_guidance,
630
+ num_videos_per_prompt=num_videos_per_prompt,
631
+ prompt_embeds=prompt_embeds,
632
+ negative_prompt_embeds=negative_prompt_embeds,
633
+ max_sequence_length=max_sequence_length,
634
+ device=device,
635
+ )
636
+ if do_classifier_free_guidance:
637
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
638
+
639
+ # 4. Prepare timesteps
640
+ timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
641
+ self._num_timesteps = len(timesteps)
642
+
643
+ # 5. Prepare latents.
644
+ latent_channels = self.transformer.config.in_channels
645
+ latents = self.prepare_latents(
646
+ batch_size * num_videos_per_prompt,
647
+ latent_channels,
648
+ num_frames,
649
+ height,
650
+ width,
651
+ prompt_embeds.dtype,
652
+ device,
653
+ generator,
654
+ latents,
655
+ ).repeat(1,2,1,1,1) # Luozhou
656
+
657
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
658
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
659
+
660
+ # 7. Create rotary embeds if required
661
+ image_rotary_emb = (
662
+ self._prepare_rotary_positional_embeddings(height, width, latents.size(1) // 2, device) # Luozhou
663
+ if self.transformer.config.use_rotary_positional_embeddings
664
+ else None
665
+ )
666
+
667
+ # 8. Denoising loop
668
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
669
+
670
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
671
+ # for DPM-solver++
672
+ old_pred_original_sample = None
673
+ for i, t in enumerate(timesteps):
674
+ if self.interrupt:
675
+ continue
676
+
677
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
678
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
679
+
680
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
681
+ timestep = t.expand(latent_model_input.shape[0])
682
+
683
+ # predict noise model_output
684
+ noise_pred = self.transformer(
685
+ hidden_states=latent_model_input,
686
+ encoder_hidden_states=prompt_embeds,
687
+ timestep=timestep,
688
+ image_rotary_emb=image_rotary_emb,
689
+ attention_kwargs=attention_kwargs,
690
+ return_dict=False,
691
+ )[0]
692
+ noise_pred = noise_pred.float()
693
+
694
+ # perform guidance
695
+ if use_dynamic_cfg:
696
+ self._guidance_scale = 1 + guidance_scale * (
697
+ (1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2
698
+ )
699
+ if do_classifier_free_guidance:
700
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
701
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
702
+
703
+ # compute the previous noisy sample x_t -> x_t-1
704
+ if not isinstance(self.scheduler, CogVideoXDPMScheduler):
705
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
706
+ else:
707
+ latents, old_pred_original_sample = self.scheduler.step(
708
+ noise_pred,
709
+ old_pred_original_sample,
710
+ t,
711
+ timesteps[i - 1] if i > 0 else None,
712
+ latents,
713
+ **extra_step_kwargs,
714
+ return_dict=False,
715
+ )
716
+ latents = latents.to(prompt_embeds.dtype)
717
+
718
+ # call the callback, if provided
719
+ if callback_on_step_end is not None:
720
+ callback_kwargs = {}
721
+ for k in callback_on_step_end_tensor_inputs:
722
+ callback_kwargs[k] = locals()[k]
723
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
724
+
725
+ latents = callback_outputs.pop("latents", latents)
726
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
727
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
728
+
729
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
730
+ progress_bar.update()
731
+
732
+ if not output_type == "latent":
733
+ video = self.decode_latents(latents)
734
+ video = self.video_processor.postprocess_video(video=video, output_type=output_type)
735
+ else:
736
+ video = latents
737
+
738
+ # Offload all models
739
+ self.maybe_free_model_hooks()
740
+
741
+ if not return_dict:
742
+ return (video,)
743
+
744
+ return CogVideoXPipelineOutput(frames=video)
CogVideoX/CogVideoX_rgba_utils.py ADDED
@@ -0,0 +1,313 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ from typing import Any, Dict, Optional, Tuple, Union
5
+ from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
6
+ from diffusers.models.modeling_outputs import Transformer2DModelOutput
7
+ from safetensors.torch import load_file
8
+
9
+ logger = logging.get_logger(__name__)
10
+
11
+ @torch.no_grad()
12
+ def decode_latents(pipe, latents):
13
+ video = pipe.decode_latents(latents)
14
+ video = pipe.video_processor.postprocess_video(video=video, output_type="np")
15
+ return video
16
+
17
+ def create_attention_mask(text_length: int, seq_length: int, device: torch.device, dtype: torch.dtype) -> torch.Tensor:
18
+ """
19
+ Create an attention mask to block text from attending to alpha.
20
+
21
+ Args:
22
+ text_length: Length of the text sequence.
23
+ seq_length: Length of the other sequence.
24
+ device: The device where the mask will be stored.
25
+ dtype: The data type of the mask tensor.
26
+
27
+ Returns:
28
+ An attention mask tensor.
29
+ """
30
+ total_length = text_length + seq_length
31
+ dense_mask = torch.ones((total_length, total_length), dtype=torch.bool)
32
+ dense_mask[:text_length, text_length + seq_length // 2:] = False
33
+ return dense_mask.to(device=device, dtype=dtype)
34
+
35
+ class RGBALoRACogVideoXAttnProcessor:
36
+ r"""
37
+ Processor for implementing scaled dot-product attention for the CogVideoX model.
38
+ It applies a rotary embedding on query and key vectors, but does not include spatial normalization.
39
+ """
40
+
41
+ def __init__(self, device, dtype, attention_mask, lora_rank=128, lora_alpha=1.0, latent_dim=3072):
42
+ if not hasattr(F, "scaled_dot_product_attention"):
43
+ raise ImportError("CogVideoXAttnProcessor requires PyTorch 2.0 or later.")
44
+
45
+ # Initialize LoRA layers
46
+ self.lora_alpha = lora_alpha
47
+ self.lora_rank = lora_rank
48
+
49
+ # Helper function to create LoRA layers
50
+ def create_lora_layer(in_dim, mid_dim, out_dim):
51
+ return nn.Sequential(
52
+ nn.Linear(in_dim, mid_dim, bias=False, device=device, dtype=dtype),
53
+ nn.Linear(mid_dim, out_dim, bias=False, device=device, dtype=dtype)
54
+ )
55
+
56
+ self.to_q_lora = create_lora_layer(latent_dim, lora_rank, latent_dim)
57
+ self.to_k_lora = create_lora_layer(latent_dim, lora_rank, latent_dim)
58
+ self.to_v_lora = create_lora_layer(latent_dim, lora_rank, latent_dim)
59
+ self.to_out_lora = create_lora_layer(latent_dim, lora_rank, latent_dim)
60
+
61
+ # Store attention mask
62
+ self.attention_mask = attention_mask
63
+
64
+ def _apply_lora(self, hidden_states, seq_len, query, key, value, scaling):
65
+ """Applies LoRA updates to query, key, and value tensors."""
66
+ query_delta = self.to_q_lora(hidden_states).to(query.device)
67
+ query[:, -seq_len // 2:, :] += query_delta[:, -seq_len // 2:, :] * scaling
68
+
69
+ key_delta = self.to_k_lora(hidden_states).to(key.device)
70
+ key[:, -seq_len // 2:, :] += key_delta[:, -seq_len // 2:, :] * scaling
71
+
72
+ value_delta = self.to_v_lora(hidden_states).to(value.device)
73
+ value[:, -seq_len // 2:, :] += value_delta[:, -seq_len // 2:, :] * scaling
74
+
75
+ return query, key, value
76
+
77
+ def _apply_rotary_embedding(self, query, key, image_rotary_emb, seq_len, text_seq_length, attn):
78
+ """Applies rotary embeddings to query and key tensors."""
79
+ from diffusers.models.embeddings import apply_rotary_emb
80
+
81
+ # Apply rotary embedding to RGB and alpha sections
82
+ query[:, :, text_seq_length:text_seq_length + seq_len // 2] = apply_rotary_emb(
83
+ query[:, :, text_seq_length:text_seq_length + seq_len // 2], image_rotary_emb)
84
+ query[:, :, text_seq_length + seq_len // 2:] = apply_rotary_emb(
85
+ query[:, :, text_seq_length + seq_len // 2:], image_rotary_emb)
86
+
87
+ if not attn.is_cross_attention:
88
+ key[:, :, text_seq_length:text_seq_length + seq_len // 2] = apply_rotary_emb(
89
+ key[:, :, text_seq_length:text_seq_length + seq_len // 2], image_rotary_emb)
90
+ key[:, :, text_seq_length + seq_len // 2:] = apply_rotary_emb(
91
+ key[:, :, text_seq_length + seq_len // 2:], image_rotary_emb)
92
+
93
+ return query, key
94
+
95
+ def __call__(
96
+ self,
97
+ attn,
98
+ hidden_states: torch.Tensor,
99
+ encoder_hidden_states: torch.Tensor,
100
+ attention_mask: Optional[torch.Tensor] = None,
101
+ image_rotary_emb: Optional[torch.Tensor] = None,
102
+ ) -> torch.Tensor:
103
+ # Concatenate encoder and decoder hidden states
104
+ text_seq_length = encoder_hidden_states.size(1)
105
+ hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
106
+
107
+ batch_size, sequence_length, _ = hidden_states.shape
108
+ seq_len = hidden_states.shape[1] - text_seq_length
109
+ scaling = self.lora_alpha / self.lora_rank
110
+
111
+ # Apply LoRA to query, key, value
112
+ query = attn.to_q(hidden_states)
113
+ key = attn.to_k(hidden_states)
114
+ value = attn.to_v(hidden_states)
115
+
116
+ query, key, value = self._apply_lora(hidden_states, seq_len, query, key, value, scaling)
117
+
118
+ # Reshape query, key, value for multi-head attention
119
+ inner_dim = key.shape[-1]
120
+ head_dim = inner_dim // attn.heads
121
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
122
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
123
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
124
+
125
+ # Normalize query and key if required
126
+ if attn.norm_q is not None:
127
+ query = attn.norm_q(query)
128
+ if attn.norm_k is not None:
129
+ key = attn.norm_k(key)
130
+
131
+ # Apply rotary embeddings if provided
132
+ if image_rotary_emb is not None:
133
+ query, key = self._apply_rotary_embedding(query, key, image_rotary_emb, seq_len, text_seq_length, attn)
134
+
135
+ # Compute scaled dot-product attention
136
+ hidden_states = F.scaled_dot_product_attention(
137
+ query, key, value, attn_mask=self.attention_mask, dropout_p=0.0, is_causal=False
138
+ )
139
+
140
+ # Reshape the output tensor back to the original shape
141
+ hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
142
+
143
+ # Apply linear projection and LoRA to the output
144
+ original_hidden_states = attn.to_out[0](hidden_states)
145
+ hidden_states_delta = self.to_out_lora(hidden_states).to(hidden_states.device)
146
+ original_hidden_states[:, -seq_len // 2:, :] += hidden_states_delta[:, -seq_len // 2:, :] * scaling
147
+
148
+ # Apply dropout
149
+ hidden_states = attn.to_out[1](original_hidden_states)
150
+
151
+ # Split back into encoder and decoder hidden states
152
+ encoder_hidden_states, hidden_states = hidden_states.split(
153
+ [text_seq_length, hidden_states.size(1) - text_seq_length], dim=1
154
+ )
155
+
156
+ return hidden_states, encoder_hidden_states
157
+
158
+ def prepare_for_rgba_inference(
159
+ model, rgba_weights_path: str, device: torch.device, dtype: torch.dtype,
160
+ lora_rank: int = 128, lora_alpha: float = 1.0, text_length: int = 226, seq_length: int = 35100
161
+ ):
162
+ def load_lora_sequential_weights(lora_layer, lora_layers, prefix):
163
+ lora_layer[0].load_state_dict({'weight': lora_layers[f"{prefix}.lora_A.weight"]})
164
+ lora_layer[1].load_state_dict({'weight': lora_layers[f"{prefix}.lora_B.weight"]})
165
+
166
+
167
+ rgba_weights = load_file(rgba_weights_path)
168
+ aux_emb = rgba_weights['domain_emb']
169
+
170
+ attention_mask = create_attention_mask(text_length, seq_length, device, dtype)
171
+ attn_procs = {}
172
+
173
+ for name in model.attn_processors.keys():
174
+ attn_processor = RGBALoRACogVideoXAttnProcessor(
175
+ device=device, dtype=dtype, attention_mask=attention_mask,
176
+ lora_rank=lora_rank, lora_alpha=lora_alpha
177
+ )
178
+
179
+ index = name.split('.')[1]
180
+ base_prefix = f'transformer.transformer_blocks.{index}.attn1'
181
+
182
+ for lora_layer, prefix in [
183
+ (attn_processor.to_q_lora, f'{base_prefix}.to_q'),
184
+ (attn_processor.to_k_lora, f'{base_prefix}.to_k'),
185
+ (attn_processor.to_v_lora, f'{base_prefix}.to_v'),
186
+ (attn_processor.to_out_lora, f'{base_prefix}.to_out.0'),
187
+ ]:
188
+ load_lora_sequential_weights(lora_layer, rgba_weights, prefix)
189
+
190
+ attn_procs[name] = attn_processor
191
+
192
+ model.set_attn_processor(attn_procs)
193
+
194
+ def custom_forward(self):
195
+ def forward(
196
+ hidden_states: torch.Tensor,
197
+ encoder_hidden_states: torch.Tensor,
198
+ timestep: Union[int, float, torch.LongTensor],
199
+ timestep_cond: Optional[torch.Tensor] = None,
200
+ ofs: Optional[Union[int, float, torch.LongTensor]] = None,
201
+ image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
202
+ attention_kwargs: Optional[Dict[str, Any]] = None,
203
+ return_dict: bool = True,
204
+ ):
205
+ if attention_kwargs is not None:
206
+ attention_kwargs = attention_kwargs.copy()
207
+ lora_scale = attention_kwargs.pop("scale", 1.0)
208
+ else:
209
+ lora_scale = 1.0
210
+
211
+ if USE_PEFT_BACKEND:
212
+ # weight the lora layers by setting `lora_scale` for each PEFT layer
213
+ scale_lora_layers(self, lora_scale)
214
+ else:
215
+ if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
216
+ logger.warning(
217
+ "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
218
+ )
219
+
220
+ batch_size, num_frames, channels, height, width = hidden_states.shape
221
+
222
+ # 1. Time embedding
223
+ timesteps = timestep
224
+ t_emb = self.time_proj(timesteps)
225
+
226
+ # timesteps does not contain any weights and will always return f32 tensors
227
+ # but time_embedding might actually be running in fp16. so we need to cast here.
228
+ # there might be better ways to encapsulate this.
229
+ t_emb = t_emb.to(dtype=hidden_states.dtype)
230
+ emb = self.time_embedding(t_emb, timestep_cond)
231
+
232
+ if self.ofs_embedding is not None:
233
+ ofs_emb = self.ofs_proj(ofs)
234
+ ofs_emb = ofs_emb.to(dtype=hidden_states.dtype)
235
+ ofs_emb = self.ofs_embedding(ofs_emb)
236
+ emb = emb + ofs_emb
237
+
238
+ # 2. Patch embedding
239
+ hidden_states = self.patch_embed(encoder_hidden_states, hidden_states)
240
+ hidden_states = self.embedding_dropout(hidden_states)
241
+
242
+ text_seq_length = encoder_hidden_states.shape[1]
243
+ encoder_hidden_states = hidden_states[:, :text_seq_length]
244
+ hidden_states = hidden_states[:, text_seq_length:]
245
+
246
+ hidden_states[:, hidden_states.size(1) // 2:, :] += aux_emb.expand(batch_size, -1, -1).to(hidden_states.device, dtype=hidden_states.dtype)
247
+
248
+ # 3. Transformer blocks
249
+ for i, block in enumerate(self.transformer_blocks):
250
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
251
+
252
+ def create_custom_forward(module):
253
+ def custom_forward(*inputs):
254
+ return module(*inputs)
255
+
256
+ return custom_forward
257
+
258
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
259
+ hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint(
260
+ create_custom_forward(block),
261
+ hidden_states,
262
+ encoder_hidden_states,
263
+ emb,
264
+ image_rotary_emb,
265
+ **ckpt_kwargs,
266
+ )
267
+ else:
268
+ hidden_states, encoder_hidden_states = block(
269
+ hidden_states=hidden_states,
270
+ encoder_hidden_states=encoder_hidden_states,
271
+ temb=emb,
272
+ image_rotary_emb=image_rotary_emb,
273
+ )
274
+
275
+ if not self.config.use_rotary_positional_embeddings:
276
+ # CogVideoX-2B
277
+ hidden_states = self.norm_final(hidden_states)
278
+ else:
279
+ # CogVideoX-5B
280
+ hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
281
+ hidden_states = self.norm_final(hidden_states)
282
+ hidden_states = hidden_states[:, text_seq_length:]
283
+
284
+ # 4. Final block
285
+ hidden_states = self.norm_out(hidden_states, temb=emb)
286
+ hidden_states = self.proj_out(hidden_states)
287
+
288
+ # 5. Unpatchify
289
+ p = self.config.patch_size
290
+ p_t = self.config.patch_size_t
291
+
292
+ if p_t is None:
293
+ output = hidden_states.reshape(batch_size, num_frames, height // p, width // p, -1, p, p)
294
+ output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4)
295
+ else:
296
+ output = hidden_states.reshape(
297
+ batch_size, (num_frames + p_t - 1) // p_t, height // p, width // p, -1, p_t, p, p
298
+ )
299
+ output = output.permute(0, 1, 5, 4, 2, 6, 3, 7).flatten(6, 7).flatten(4, 5).flatten(1, 2)
300
+
301
+ if USE_PEFT_BACKEND:
302
+ # remove `lora_scale` from each PEFT layer
303
+ unscale_lora_layers(self, lora_scale)
304
+
305
+ if not return_dict:
306
+ return (output,)
307
+ return Transformer2DModelOutput(sample=output)
308
+
309
+
310
+ return forward
311
+
312
+ model.forward = custom_forward(model)
313
+
CogVideoX/CogVideoX_test.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from diffusers import CogVideoXImageToVideoPipeline
3
+ from diffusers.utils import export_to_video, load_image
4
+
5
+ prompt = "A dragon is flipping its wings"
6
+ image = load_image(image="/hpc2hdd/home/lwang592/projects/CogVideo/sat/configs/i2v/Dragon.jpg")
7
+ pipe = CogVideoXImageToVideoPipeline.from_pretrained(
8
+ "THUDM/CogVideoX-5b-I2V",
9
+ torch_dtype=torch.bfloat16
10
+ )
11
+
12
+ pipe.enable_sequential_cpu_offload()
13
+ pipe.vae.enable_tiling()
14
+ pipe.vae.enable_slicing()
15
+
16
+ video = pipe(
17
+ prompt=prompt,
18
+ image=image,
19
+ num_videos_per_prompt=1,
20
+ num_inference_steps=50,
21
+ num_frames=13,
22
+ guidance_scale=6,
23
+ generator=torch.Generator(device="cuda").manual_seed(42),
24
+ ).frames[0]
25
+
26
+ export_to_video(video, "output.mp4", fps=8)