File size: 15,226 Bytes
d5e7677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import numpy as np
from datetime import datetime
import logging
import nltk
import emoji
import re
import json
import warnings
import random

warnings.filterwarnings('ignore')

class EnhancedMentalHealthBot:
    def __init__(self):
        # Initialize base model components
        self.model_name = "microsoft/DialoGPT-medium"
        self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
        self.model = AutoModelForCausalLM.from_pretrained(self.model_name)
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.model.to(self.device)

        # Initialize session management
        self.chat_history = []
        self.current_emotional_state = "neutral"
        self.session_notes = []
        self.therapy_goals = {}

        # Therapeutic approaches available
        self.therapeutic_approaches = {
            "cbt": {
                "active": False,
                "techniques": ["thought_challenging", "behavioral_activation", "cognitive_restructuring"],
                "session_structure": ["review", "agenda", "homework", "feedback"]
            },
            "dbt": {
                "active": False,
                "techniques": ["mindfulness", "distress_tolerance", "emotion_regulation"],
                "skills": ["wise_mind", "radical_acceptance", "crisis_survival"]
            },
            "solution_focused": {
                "active": False,
                "techniques": ["miracle_question", "scaling", "exception_finding"],
                "focus": "future_oriented"
            },
            "mindfulness": {
                "active": False,
                "exercises": ["breathing", "body_scan", "grounding"],
                "duration": "5-10 minutes"
            }
        }

        # Enhanced communication preferences
        self.communication_modes = {
            "text": True,
            "simple": False,
            "emoji": False,
            "structured": False,
            "metaphorical": False,
            "visual_aids": False,
            "guided_exercises": False
        }

        # Expanded support resources
        self.support_resources = {
            "crisis": {
                "hotline": "988",
                "text_line": "Text HOME to 741741",
                "emergency": "911"
            },
            "community": {
                "support_groups": "https://www.nami.org/Support-Education/Support-Groups",
                "peer_support": "https://www.mhanational.org/find-support-groups"
            },
            "self_help": {
                "meditation_apps": ["Headspace", "Calm", "Insight Timer"],
                "workbooks": ["Mind Over Mood", "The Anxiety and Phobia Workbook"],
                "online_resources": ["https://www.therapistaid.com/worksheets"]
            },
            "professional": {
                "find_therapist": "https://www.psychologytoday.com/us/therapists",
                "teletherapy": ["BetterHelp", "Talkspace", "7 Cups"]
            }
        }

        # Setup advanced logging and analytics
        logging.basicConfig(
            filename='therapy_sessions.log',
            level=logging.INFO,
            format='%(asctime)s - %(levelname)s - %(message)s'
        )

        # Initialize NLTK components
        nltk.download('vader_lexicon')
        nltk.download('punkt')
        from nltk.sentiment.vader import SentimentIntensityAnalyzer
        self.sia = SentimentIntensityAnalyzer()

        # Initialize therapeutic progress tracking
        self.progress_metrics = {
            "mood_tracking": [],
            "goal_progress": {},
            "skill_usage": {},
            "session_ratings": []
        }

    def detect_therapeutic_needs(self, text):
        """Analyze text to determine appropriate therapeutic approach"""
        # Keywords associated with different therapeutic approaches
        approach_keywords = {
            "cbt": ["thoughts", "beliefs", "thinking patterns", "behavior", "negative thoughts"],
            "dbt": ["overwhelming emotions", "impulses", "relationships", "mindfulness"],
            "solution_focused": ["goals", "future", "solutions", "changes", "better"],
            "mindfulness": ["present moment", "awareness", "meditation", "breathing", "stress"]
        }

        text_lower = text.lower()
        detected_approaches = []

        for approach, keywords in approach_keywords.items():
            if any(keyword in text_lower for keyword in keywords):
                detected_approaches.append(approach)

        return detected_approaches

    def detect_emotion(self, text):
        """Detect emotion based on sentiment analysis"""
        sentiment_scores = self.sia.polarity_scores(text)
        compound_score = sentiment_scores['compound']

        if compound_score >= 0.05:
            return "positive"
        elif compound_score <= -0.05:
            return "negative"
        else:
            return "neutral"

    def generate_therapeutic_response(self, user_input, active_approaches=None):
        """Generate response using appropriate therapeutic approach"""
        detected_needs = self.detect_therapeutic_needs(user_input)
        emotion = self.detect_emotion(user_input)

        # Base response generation
        base_response = self._generate_base_response(user_input)

        # Filter the base response
        if base_response.lower().startswith(user_input.lower()):
            base_response = ""  # Remove the duplicate input

        # Enhance response with therapeutic elements
        enhanced_response = self._apply_therapeutic_techniques(
            base_response,
            detected_needs,
            emotion
        )

        # Add coping strategies if needed
        if emotion in ["distressed", "negative"]:
            enhanced_response += self._suggest_coping_strategies(emotion)

        # Add progress tracking
        self._update_progress_metrics(user_input, emotion)

        # If the response is still too generic, create a new base response
        if not enhanced_response or enhanced_response.lower().startswith(user_input.lower()):
            if "work anxiety" in user_input.lower():
                new_base_response = "It's understandable to feel anxious about work. What specific aspects of work are causing you anxiety?"
                enhanced_response = self._apply_therapeutic_techniques(
                    new_base_response,
                    detected_needs,
                    emotion
                )
            elif "negative thoughts" in user_input.lower() or "can't control" in user_input.lower():
                new_base_response = "It's common to experience negative thoughts, and it's important to remember you're not alone. Can you tell me more about the thoughts you're having?"
                enhanced_response = self._apply_therapeutic_techniques(
                    new_base_response,
                    detected_needs,
                    emotion
                )

        return enhanced_response

    def _apply_therapeutic_techniques(self, response, approaches, emotion):
        """Apply specific therapeutic techniques to the response"""
        enhanced_response = response

        if "cbt" in approaches and self.therapeutic_approaches["cbt"]["active"]:
            enhanced_response = self._add_cbt_elements(enhanced_response, emotion)

        if "dbt" in approaches and self.therapeutic_approaches["dbt"]["active"]:
            enhanced_response = self._add_dbt_elements(enhanced_response, emotion)

        if "solution_focused" in approaches and self.therapeutic_approaches["solution_focused"]["active"]:
            enhanced_response = self._add_solution_focused_elements(enhanced_response)

        if "mindfulness" in approaches and self.therapeutic_approaches["mindfulness"]["active"]:
            enhanced_response = self._add_mindfulness_elements(enhanced_response)

        return enhanced_response

    def _add_cbt_elements(self, response, emotion):
        """Add CBT-specific elements to response"""
        cbt_prompts = [
            "What thoughts are coming up for you when you feel this way?",
            "Let's examine the evidence for and against this thought. For example, what evidence supports the thought that you can't control them, and what evidence contradicts it?",
            "Could there be another way to look at this situation? What might a more balanced or helpful thought be?"
        ]

        return f"{response}\n\nFrom a CBT perspective: {random.choice(cbt_prompts)}"

    def _add_dbt_elements(self, response, emotion):
        """Add DBT-specific elements to response"""
        if emotion == "distressed":
            dbt_skills = [
                "Try this distress tolerance skill: TIPP (Temperature, Intense exercise, Paced breathing, Progressive muscle relaxation)",
                "Practice radical acceptance: 'This is where I am right now, and I can cope with this moment'",
                "Use the PLEASE skill: treat PhysicaL illness, balanced Eating, avoid mood-Altering drugs, balanced Sleep, get Exercise"
            ]
            return f"{response}\n\nDBT Skill Suggestion: {random.choice(dbt_skills)}"
        return response

    def _suggest_coping_strategies(self, emotion):
        """Suggest appropriate coping strategies based on emotional state"""
        strategies = {
            "distressed": [
                "Take slow, deep breaths for 2 minutes",
                "Try the 5-4-3-2-1 grounding exercise",
                "Step outside for fresh air",
                "Engage in a relaxing activity you enjoy."
            ],
            "negative": [
                "Write down three things you're grateful for",
                "Do a brief mindfulness exercise like focusing on your breath or your senses.",
                "Reach out to a supportive person"
            ]
        }

        if emotion in strategies:
            selected_strategy = random.choice(strategies[emotion])
            return f"\n\nCoping Strategy Suggestion: {selected_strategy}"
        return ""

    def _update_progress_metrics(self, user_input, emotion):
        """Track therapeutic progress"""
        self.progress_metrics["mood_tracking"].append({
            "timestamp": datetime.now().isoformat(),
            "emotion": emotion,
            "intensity": self.sia.polarity_scores(user_input)["compound"]
        })

    def update_communication_preferences(self, preferences):
        """Update communication preferences"""
        for key, value in preferences.items():
            if key in self.communication_modes:
                self.communication_modes[key] = value

    def _generate_base_response(self, user_input):
        """Generate a base response using the language model"""
        # Tokenize and encode the input
        input_ids = self.tokenizer.encode(user_input, return_tensors="pt")
        input_ids = input_ids.to(self.device)

        # Generate response
        output = self.model.generate(input_ids, max_length=50, do_sample=True, top_k=50, top_p=0.95)
        generated_text = self.tokenizer.decode(output[0], skip_special_tokens=True)

        return generated_text

    def _add_solution_focused_elements(self, response):
        """Add solution-focused elements to response"""
        solution_focused_prompts = [
            "What would a successful outcome look like for you?",
            "What are some small steps you can take towards achieving this goal?",
            "When have you experienced similar challenges in the past, and what helped you cope?"
        ]

        return f"{response}\n\nFrom a solution-focused perspective: {random.choice(solution_focused_prompts)}"

    def _add_mindfulness_elements(self, response):
        """Add mindfulness elements to response"""
        mindfulness_exercises = [
            "Take a few deep breaths and focus on your breath as it enters and leaves your body",
            "Scan your body, noticing any sensations without judgment",
            "Notice the sounds around you and try to identify them"
        ]

        return f"{response}\n\nMindfulness Exercise Suggestion: {random.choice(mindfulness_exercises)}"

def create_enhanced_interface():
    bot = EnhancedMentalHealthBot()

    def chat(message, history,
            use_cbt, use_dbt, use_solution_focused, use_mindfulness,
            simple_mode, emoji_mode, structured_mode, guided_mode):

        # Update therapeutic approaches
        bot.therapeutic_approaches["cbt"]["active"] = use_cbt
        bot.therapeutic_approaches["dbt"]["active"] = use_dbt
        bot.therapeutic_approaches["solution_focused"]["active"] = use_solution_focused
        bot.therapeutic_approaches["mindfulness"]["active"] = use_mindfulness

        # Update communication preferences
        bot.update_communication_preferences({
            "simple": simple_mode,
            "emoji": emoji_mode,
            "structured": structured_mode,
            "guided_exercises": guided_mode
        })

        response = bot.generate_therapeutic_response(message, [
            "cbt" if use_cbt else None,
            "dbt" if use_dbt else None,
            "solution_focused" if use_solution_focused else None,
            "mindfulness" if use_mindfulness else None
        ])
        return response

    # Create enhanced Gradio interface
    iface = gr.ChatInterface(
        fn=chat,
        additional_inputs=[
            gr.Checkbox(label="Use CBT Techniques", value=False),
            gr.Checkbox(label="Use DBT Skills", value=False),
            gr.Checkbox(label="Use Solution-Focused Approach", value=False),
            gr.Checkbox(label="Include Mindfulness Exercises", value=False),
            gr.Checkbox(label="Use Simple Language", value=False),
            gr.Checkbox(label="Use Emoji Support", value=False),
            gr.Checkbox(label="Use Structured Responses", value=False),
            gr.Checkbox(label="Include Guided Exercises", value=False)
        ],
        title="Professional Mental Health Support Platform",
        description="""
        Welcome to your secure online mental health support session. This platform offers:

        - Evidence-based therapeutic approaches (CBT, DBT, Solution-Focused, Mindfulness)
        - Personalized communication styles
        - Progress tracking
        - Coping strategies and resources

        Note: This is a supportive tool but not a replacement for professional mental health care.
        For immediate crisis support, please call 988 (US) or your local emergency services.

        Your privacy and confidentiality are important to us.
        """,
        examples=[
            ["I've been feeling anxious about work lately"],
            ["I keep having negative thoughts that I can't control"],
            ["I want to improve my relationships but don't know where to start"],
            ["Everything feels overwhelming right now"]
        ]
    )

    return iface

# Launch the enhanced interface
if __name__ == "__main__":
    iface = create_enhanced_interface()
    iface.launch(share=True)