from transformers import AutoModelForCausalLM, AutoTokenizer import gradio as gr # Load the model and tokenizer model_name = "silma-ai/SILMA-9B-Instruct-v1.0" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) def generate_response(prompt): inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_length=200, num_return_sequences=1) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Gradio Interface interface = gr.Interface( fn=generate_response, inputs="text", outputs="text", title="SILMA-9B Instruct", description="Provide a prompt, and the model generates a response." ) interface.launch()