File size: 787 Bytes
2857f30
57b56de
 
2857f30
 
751500d
2857f30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57b56de
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr

# Load the model and tokenizer
model_name = "silma-ai/SILMA-9B-Instruct-v1.0"
model_name = "rombodawg/Rombos-LLM-V2.5-Qwen-72b"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

def generate_response(prompt):
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(**inputs, max_length=200, num_return_sequences=1)
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

# Gradio Interface
interface = gr.Interface(
    fn=generate_response,
    inputs="text",
    outputs="text",
    title="SILMA-9B Instruct",
    description="Provide a prompt, and the model generates a response."
)

interface.launch()