Spaces:
Running
on
Zero
Running
on
Zero
from typing import Optional | |
from einops import rearrange | |
import torch | |
import torch.nn as nn | |
from .activation_layers import get_activation_layer | |
from .attenion import attention | |
from .norm_layers import get_norm_layer | |
from .embed_layers import TimestepEmbedder, TextProjection | |
from .attenion import attention | |
from .mlp_layers import MLP | |
from .modulate_layers import modulate, apply_gate | |
class IndividualTokenRefinerBlock(nn.Module): | |
def __init__( | |
self, | |
hidden_size, | |
heads_num, | |
mlp_width_ratio: str = 4.0, | |
mlp_drop_rate: float = 0.0, | |
act_type: str = "silu", | |
qk_norm: bool = False, | |
qk_norm_type: str = "layer", | |
qkv_bias: bool = True, | |
dtype: Optional[torch.dtype] = None, | |
device: Optional[torch.device] = None, | |
): | |
factory_kwargs = {"device": device, "dtype": dtype} | |
super().__init__() | |
self.heads_num = heads_num | |
head_dim = hidden_size // heads_num | |
mlp_hidden_dim = int(hidden_size * mlp_width_ratio) | |
self.norm1 = nn.LayerNorm( | |
hidden_size, elementwise_affine=True, eps=1e-6, **factory_kwargs | |
) | |
self.self_attn_qkv = nn.Linear( | |
hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs | |
) | |
qk_norm_layer = get_norm_layer(qk_norm_type) | |
self.self_attn_q_norm = ( | |
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) | |
if qk_norm | |
else nn.Identity() | |
) | |
self.self_attn_k_norm = ( | |
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) | |
if qk_norm | |
else nn.Identity() | |
) | |
self.self_attn_proj = nn.Linear( | |
hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs | |
) | |
self.norm2 = nn.LayerNorm( | |
hidden_size, elementwise_affine=True, eps=1e-6, **factory_kwargs | |
) | |
act_layer = get_activation_layer(act_type) | |
self.mlp = MLP( | |
in_channels=hidden_size, | |
hidden_channels=mlp_hidden_dim, | |
act_layer=act_layer, | |
drop=mlp_drop_rate, | |
**factory_kwargs, | |
) | |
self.adaLN_modulation = nn.Sequential( | |
act_layer(), | |
nn.Linear(hidden_size, 2 * hidden_size, bias=True, **factory_kwargs), | |
) | |
# Zero-initialize the modulation | |
nn.init.zeros_(self.adaLN_modulation[1].weight) | |
nn.init.zeros_(self.adaLN_modulation[1].bias) | |
def forward( | |
self, | |
x: torch.Tensor, | |
c: torch.Tensor, # timestep_aware_representations + context_aware_representations | |
attn_mask: torch.Tensor = None, | |
): | |
gate_msa, gate_mlp = self.adaLN_modulation(c).chunk(2, dim=1) | |
norm_x = self.norm1(x) | |
qkv = self.self_attn_qkv(norm_x) | |
q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num) | |
# Apply QK-Norm if needed | |
q = self.self_attn_q_norm(q).to(v) | |
k = self.self_attn_k_norm(k).to(v) | |
# Self-Attention | |
attn = attention(q, k, v, mode="torch", attn_mask=attn_mask) | |
x = x + apply_gate(self.self_attn_proj(attn), gate_msa) | |
# FFN Layer | |
x = x + apply_gate(self.mlp(self.norm2(x)), gate_mlp) | |
return x | |
class IndividualTokenRefiner(nn.Module): | |
def __init__( | |
self, | |
hidden_size, | |
heads_num, | |
depth, | |
mlp_width_ratio: float = 4.0, | |
mlp_drop_rate: float = 0.0, | |
act_type: str = "silu", | |
qk_norm: bool = False, | |
qk_norm_type: str = "layer", | |
qkv_bias: bool = True, | |
dtype: Optional[torch.dtype] = None, | |
device: Optional[torch.device] = None, | |
): | |
factory_kwargs = {"device": device, "dtype": dtype} | |
super().__init__() | |
self.blocks = nn.ModuleList( | |
[ | |
IndividualTokenRefinerBlock( | |
hidden_size=hidden_size, | |
heads_num=heads_num, | |
mlp_width_ratio=mlp_width_ratio, | |
mlp_drop_rate=mlp_drop_rate, | |
act_type=act_type, | |
qk_norm=qk_norm, | |
qk_norm_type=qk_norm_type, | |
qkv_bias=qkv_bias, | |
**factory_kwargs, | |
) | |
for _ in range(depth) | |
] | |
) | |
def forward( | |
self, | |
x: torch.Tensor, | |
c: torch.LongTensor, | |
mask: Optional[torch.Tensor] = None, | |
): | |
self_attn_mask = None | |
if mask is not None: | |
batch_size = mask.shape[0] | |
seq_len = mask.shape[1] | |
mask = mask.to(x.device) | |
# batch_size x 1 x seq_len x seq_len | |
self_attn_mask_1 = mask.view(batch_size, 1, 1, seq_len).repeat( | |
1, 1, seq_len, 1 | |
) | |
# batch_size x 1 x seq_len x seq_len | |
self_attn_mask_2 = self_attn_mask_1.transpose(2, 3) | |
# batch_size x 1 x seq_len x seq_len, 1 for broadcasting of heads_num | |
self_attn_mask = (self_attn_mask_1 & self_attn_mask_2).bool() | |
# avoids self-attention weight being NaN for padding tokens | |
self_attn_mask[:, :, :, 0] = True | |
for block in self.blocks: | |
x = block(x, c, self_attn_mask) | |
return x | |
class SingleTokenRefiner(nn.Module): | |
""" | |
A single token refiner block for llm text embedding refine. | |
""" | |
def __init__( | |
self, | |
in_channels, | |
hidden_size, | |
heads_num, | |
depth, | |
mlp_width_ratio: float = 4.0, | |
mlp_drop_rate: float = 0.0, | |
act_type: str = "silu", | |
qk_norm: bool = False, | |
qk_norm_type: str = "layer", | |
qkv_bias: bool = True, | |
attn_mode: str = "torch", | |
dtype: Optional[torch.dtype] = None, | |
device: Optional[torch.device] = None, | |
): | |
factory_kwargs = {"device": device, "dtype": dtype} | |
super().__init__() | |
self.attn_mode = attn_mode | |
assert self.attn_mode == "torch", "Only support 'torch' mode for token refiner." | |
self.input_embedder = nn.Linear( | |
in_channels, hidden_size, bias=True, **factory_kwargs | |
) | |
act_layer = get_activation_layer(act_type) | |
# Build timestep embedding layer | |
self.t_embedder = TimestepEmbedder(hidden_size, act_layer, **factory_kwargs) | |
# Build context embedding layer | |
self.c_embedder = TextProjection( | |
in_channels, hidden_size, act_layer, **factory_kwargs | |
) | |
self.individual_token_refiner = IndividualTokenRefiner( | |
hidden_size=hidden_size, | |
heads_num=heads_num, | |
depth=depth, | |
mlp_width_ratio=mlp_width_ratio, | |
mlp_drop_rate=mlp_drop_rate, | |
act_type=act_type, | |
qk_norm=qk_norm, | |
qk_norm_type=qk_norm_type, | |
qkv_bias=qkv_bias, | |
**factory_kwargs, | |
) | |
def forward( | |
self, | |
x: torch.Tensor, | |
t: torch.LongTensor, | |
mask: Optional[torch.LongTensor] = None, | |
): | |
timestep_aware_representations = self.t_embedder(t) | |
if mask is None: | |
context_aware_representations = x.mean(dim=1) | |
else: | |
mask_float = mask.float().unsqueeze(-1) # [b, s1, 1] | |
context_aware_representations = (x * mask_float).sum( | |
dim=1 | |
) / mask_float.sum(dim=1) | |
context_aware_representations = self.c_embedder(context_aware_representations) | |
c = timestep_aware_representations + context_aware_representations | |
x = self.input_embedder(x) | |
x = self.individual_token_refiner(x, c, mask) | |
return x | |