Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
class RMSNorm(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
elementwise_affine=True, | |
eps: float = 1e-6, | |
device=None, | |
dtype=None, | |
): | |
""" | |
Initialize the RMSNorm normalization layer. | |
Args: | |
dim (int): The dimension of the input tensor. | |
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6. | |
Attributes: | |
eps (float): A small value added to the denominator for numerical stability. | |
weight (nn.Parameter): Learnable scaling parameter. | |
""" | |
factory_kwargs = {"device": device, "dtype": dtype} | |
super().__init__() | |
self.eps = eps | |
if elementwise_affine: | |
self.weight = nn.Parameter(torch.ones(dim, **factory_kwargs)) | |
def _norm(self, x): | |
""" | |
Apply the RMSNorm normalization to the input tensor. | |
Args: | |
x (torch.Tensor): The input tensor. | |
Returns: | |
torch.Tensor: The normalized tensor. | |
""" | |
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) | |
def forward(self, x): | |
""" | |
Forward pass through the RMSNorm layer. | |
Args: | |
x (torch.Tensor): The input tensor. | |
Returns: | |
torch.Tensor: The output tensor after applying RMSNorm. | |
""" | |
output = self._norm(x.float()).type_as(x) | |
if hasattr(self, "weight"): | |
output = output * self.weight | |
return output | |
def get_norm_layer(norm_layer): | |
""" | |
Get the normalization layer. | |
Args: | |
norm_layer (str): The type of normalization layer. | |
Returns: | |
norm_layer (nn.Module): The normalization layer. | |
""" | |
if norm_layer == "layer": | |
return nn.LayerNorm | |
elif norm_layer == "rms": | |
return RMSNorm | |
else: | |
raise NotImplementedError(f"Norm layer {norm_layer} is not implemented") | |