Spaces:
Running
on
Zero
Running
on
Zero
from typing import Callable | |
import torch | |
import torch.nn as nn | |
class ModulateDiT(nn.Module): | |
"""Modulation layer for DiT.""" | |
def __init__( | |
self, | |
hidden_size: int, | |
factor: int, | |
act_layer: Callable, | |
dtype=None, | |
device=None, | |
): | |
factory_kwargs = {"dtype": dtype, "device": device} | |
super().__init__() | |
self.act = act_layer() | |
self.linear = nn.Linear( | |
hidden_size, factor * hidden_size, bias=True, **factory_kwargs | |
) | |
# Zero-initialize the modulation | |
nn.init.zeros_(self.linear.weight) | |
nn.init.zeros_(self.linear.bias) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
return self.linear(self.act(x)) | |
def modulate(x, shift=None, scale=None): | |
"""modulate by shift and scale | |
Args: | |
x (torch.Tensor): input tensor. | |
shift (torch.Tensor, optional): shift tensor. Defaults to None. | |
scale (torch.Tensor, optional): scale tensor. Defaults to None. | |
Returns: | |
torch.Tensor: the output tensor after modulate. | |
""" | |
if scale is None and shift is None: | |
return x | |
elif shift is None: | |
return x * (1 + scale.unsqueeze(1)) | |
elif scale is None: | |
return x + shift.unsqueeze(1) | |
else: | |
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) | |
def apply_gate(x, gate=None, tanh=False): | |
"""AI is creating summary for apply_gate | |
Args: | |
x (torch.Tensor): input tensor. | |
gate (torch.Tensor, optional): gate tensor. Defaults to None. | |
tanh (bool, optional): whether to use tanh function. Defaults to False. | |
Returns: | |
torch.Tensor: the output tensor after apply gate. | |
""" | |
if gate is None: | |
return x | |
if tanh: | |
return x * gate.unsqueeze(1).tanh() | |
else: | |
return x * gate.unsqueeze(1) | |
def ckpt_wrapper(module): | |
def ckpt_forward(*inputs): | |
outputs = module(*inputs) | |
return outputs | |
return ckpt_forward | |