Spaces:
Running
on
Zero
Running
on
Zero
from typing import Any, List, Tuple, Optional, Union, Dict | |
from einops import rearrange | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from diffusers.models import ModelMixin | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from .activation_layers import get_activation_layer | |
from .norm_layers import get_norm_layer | |
from .embed_layers import TimestepEmbedder, PatchEmbed, TextProjection | |
from .attenion import attention, parallel_attention, get_cu_seqlens | |
from .posemb_layers import apply_rotary_emb | |
from .mlp_layers import MLP, MLPEmbedder, FinalLayer | |
from .modulate_layers import ModulateDiT, modulate, apply_gate | |
from .token_refiner import SingleTokenRefiner | |
class MMDoubleStreamBlock(nn.Module): | |
""" | |
A multimodal dit block with seperate modulation for | |
text and image/video, see more details (SD3): https://arxiv.org/abs/2403.03206 | |
(Flux.1): https://github.com/black-forest-labs/flux | |
""" | |
def __init__( | |
self, | |
hidden_size: int, | |
heads_num: int, | |
mlp_width_ratio: float, | |
mlp_act_type: str = "gelu_tanh", | |
qk_norm: bool = True, | |
qk_norm_type: str = "rms", | |
qkv_bias: bool = False, | |
dtype: Optional[torch.dtype] = None, | |
device: Optional[torch.device] = None, | |
): | |
factory_kwargs = {"device": device, "dtype": dtype} | |
super().__init__() | |
self.deterministic = False | |
self.heads_num = heads_num | |
head_dim = hidden_size // heads_num | |
mlp_hidden_dim = int(hidden_size * mlp_width_ratio) | |
self.img_mod = ModulateDiT( | |
hidden_size, | |
factor=6, | |
act_layer=get_activation_layer("silu"), | |
**factory_kwargs, | |
) | |
self.img_norm1 = nn.LayerNorm( | |
hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs | |
) | |
self.img_attn_qkv = nn.Linear( | |
hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs | |
) | |
qk_norm_layer = get_norm_layer(qk_norm_type) | |
self.img_attn_q_norm = ( | |
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) | |
if qk_norm | |
else nn.Identity() | |
) | |
self.img_attn_k_norm = ( | |
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) | |
if qk_norm | |
else nn.Identity() | |
) | |
self.img_attn_proj = nn.Linear( | |
hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs | |
) | |
self.img_norm2 = nn.LayerNorm( | |
hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs | |
) | |
self.img_mlp = MLP( | |
hidden_size, | |
mlp_hidden_dim, | |
act_layer=get_activation_layer(mlp_act_type), | |
bias=True, | |
**factory_kwargs, | |
) | |
self.txt_mod = ModulateDiT( | |
hidden_size, | |
factor=6, | |
act_layer=get_activation_layer("silu"), | |
**factory_kwargs, | |
) | |
self.txt_norm1 = nn.LayerNorm( | |
hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs | |
) | |
self.txt_attn_qkv = nn.Linear( | |
hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs | |
) | |
self.txt_attn_q_norm = ( | |
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) | |
if qk_norm | |
else nn.Identity() | |
) | |
self.txt_attn_k_norm = ( | |
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) | |
if qk_norm | |
else nn.Identity() | |
) | |
self.txt_attn_proj = nn.Linear( | |
hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs | |
) | |
self.txt_norm2 = nn.LayerNorm( | |
hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs | |
) | |
self.txt_mlp = MLP( | |
hidden_size, | |
mlp_hidden_dim, | |
act_layer=get_activation_layer(mlp_act_type), | |
bias=True, | |
**factory_kwargs, | |
) | |
self.hybrid_seq_parallel_attn = None | |
def enable_deterministic(self): | |
self.deterministic = True | |
def disable_deterministic(self): | |
self.deterministic = False | |
def forward( | |
self, | |
img: torch.Tensor, | |
txt: torch.Tensor, | |
vec: torch.Tensor, | |
cu_seqlens_q: Optional[torch.Tensor] = None, | |
cu_seqlens_kv: Optional[torch.Tensor] = None, | |
max_seqlen_q: Optional[int] = None, | |
max_seqlen_kv: Optional[int] = None, | |
freqs_cis: tuple = None, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
( | |
img_mod1_shift, | |
img_mod1_scale, | |
img_mod1_gate, | |
img_mod2_shift, | |
img_mod2_scale, | |
img_mod2_gate, | |
) = self.img_mod(vec).chunk(6, dim=-1) | |
( | |
txt_mod1_shift, | |
txt_mod1_scale, | |
txt_mod1_gate, | |
txt_mod2_shift, | |
txt_mod2_scale, | |
txt_mod2_gate, | |
) = self.txt_mod(vec).chunk(6, dim=-1) | |
# Prepare image for attention. | |
img_modulated = self.img_norm1(img) | |
img_modulated = modulate( | |
img_modulated, shift=img_mod1_shift, scale=img_mod1_scale | |
) | |
img_qkv = self.img_attn_qkv(img_modulated) | |
img_q, img_k, img_v = rearrange( | |
img_qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num | |
) | |
# Apply QK-Norm if needed | |
img_q = self.img_attn_q_norm(img_q).to(img_v) | |
img_k = self.img_attn_k_norm(img_k).to(img_v) | |
# Apply RoPE if needed. | |
if freqs_cis is not None: | |
img_qq, img_kk = apply_rotary_emb(img_q, img_k, freqs_cis, head_first=False) | |
assert ( | |
img_qq.shape == img_q.shape and img_kk.shape == img_k.shape | |
), f"img_kk: {img_qq.shape}, img_q: {img_q.shape}, img_kk: {img_kk.shape}, img_k: {img_k.shape}" | |
img_q, img_k = img_qq, img_kk | |
# Prepare txt for attention. | |
txt_modulated = self.txt_norm1(txt) | |
txt_modulated = modulate( | |
txt_modulated, shift=txt_mod1_shift, scale=txt_mod1_scale | |
) | |
txt_qkv = self.txt_attn_qkv(txt_modulated) | |
txt_q, txt_k, txt_v = rearrange( | |
txt_qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num | |
) | |
# Apply QK-Norm if needed. | |
txt_q = self.txt_attn_q_norm(txt_q).to(txt_v) | |
txt_k = self.txt_attn_k_norm(txt_k).to(txt_v) | |
# Run actual attention. | |
q = torch.cat((img_q, txt_q), dim=1) | |
k = torch.cat((img_k, txt_k), dim=1) | |
v = torch.cat((img_v, txt_v), dim=1) | |
assert ( | |
cu_seqlens_q.shape[0] == 2 * img.shape[0] + 1 | |
), f"cu_seqlens_q.shape:{cu_seqlens_q.shape}, img.shape[0]:{img.shape[0]}" | |
# attention computation start | |
if not self.hybrid_seq_parallel_attn: | |
attn = attention( | |
q, | |
k, | |
v, | |
cu_seqlens_q=cu_seqlens_q, | |
cu_seqlens_kv=cu_seqlens_kv, | |
max_seqlen_q=max_seqlen_q, | |
max_seqlen_kv=max_seqlen_kv, | |
batch_size=img_k.shape[0], | |
) | |
else: | |
attn = parallel_attention( | |
self.hybrid_seq_parallel_attn, | |
q, | |
k, | |
v, | |
img_q_len=img_q.shape[1], | |
img_kv_len=img_k.shape[1], | |
cu_seqlens_q=cu_seqlens_q, | |
cu_seqlens_kv=cu_seqlens_kv | |
) | |
# attention computation end | |
img_attn, txt_attn = attn[:, : img.shape[1]], attn[:, img.shape[1] :] | |
# Calculate the img bloks. | |
img = img + apply_gate(self.img_attn_proj(img_attn), gate=img_mod1_gate) | |
img = img + apply_gate( | |
self.img_mlp( | |
modulate( | |
self.img_norm2(img), shift=img_mod2_shift, scale=img_mod2_scale | |
) | |
), | |
gate=img_mod2_gate, | |
) | |
# Calculate the txt bloks. | |
txt = txt + apply_gate(self.txt_attn_proj(txt_attn), gate=txt_mod1_gate) | |
txt = txt + apply_gate( | |
self.txt_mlp( | |
modulate( | |
self.txt_norm2(txt), shift=txt_mod2_shift, scale=txt_mod2_scale | |
) | |
), | |
gate=txt_mod2_gate, | |
) | |
return img, txt | |
class MMSingleStreamBlock(nn.Module): | |
""" | |
A DiT block with parallel linear layers as described in | |
https://arxiv.org/abs/2302.05442 and adapted modulation interface. | |
Also refer to (SD3): https://arxiv.org/abs/2403.03206 | |
(Flux.1): https://github.com/black-forest-labs/flux | |
""" | |
def __init__( | |
self, | |
hidden_size: int, | |
heads_num: int, | |
mlp_width_ratio: float = 4.0, | |
mlp_act_type: str = "gelu_tanh", | |
qk_norm: bool = True, | |
qk_norm_type: str = "rms", | |
qk_scale: float = None, | |
dtype: Optional[torch.dtype] = None, | |
device: Optional[torch.device] = None, | |
): | |
factory_kwargs = {"device": device, "dtype": dtype} | |
super().__init__() | |
self.deterministic = False | |
self.hidden_size = hidden_size | |
self.heads_num = heads_num | |
head_dim = hidden_size // heads_num | |
mlp_hidden_dim = int(hidden_size * mlp_width_ratio) | |
self.mlp_hidden_dim = mlp_hidden_dim | |
self.scale = qk_scale or head_dim ** -0.5 | |
# qkv and mlp_in | |
self.linear1 = nn.Linear( | |
hidden_size, hidden_size * 3 + mlp_hidden_dim, **factory_kwargs | |
) | |
# proj and mlp_out | |
self.linear2 = nn.Linear( | |
hidden_size + mlp_hidden_dim, hidden_size, **factory_kwargs | |
) | |
qk_norm_layer = get_norm_layer(qk_norm_type) | |
self.q_norm = ( | |
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) | |
if qk_norm | |
else nn.Identity() | |
) | |
self.k_norm = ( | |
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) | |
if qk_norm | |
else nn.Identity() | |
) | |
self.pre_norm = nn.LayerNorm( | |
hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs | |
) | |
self.mlp_act = get_activation_layer(mlp_act_type)() | |
self.modulation = ModulateDiT( | |
hidden_size, | |
factor=3, | |
act_layer=get_activation_layer("silu"), | |
**factory_kwargs, | |
) | |
self.hybrid_seq_parallel_attn = None | |
def enable_deterministic(self): | |
self.deterministic = True | |
def disable_deterministic(self): | |
self.deterministic = False | |
def forward( | |
self, | |
x: torch.Tensor, | |
vec: torch.Tensor, | |
txt_len: int, | |
cu_seqlens_q: Optional[torch.Tensor] = None, | |
cu_seqlens_kv: Optional[torch.Tensor] = None, | |
max_seqlen_q: Optional[int] = None, | |
max_seqlen_kv: Optional[int] = None, | |
freqs_cis: Tuple[torch.Tensor, torch.Tensor] = None, | |
) -> torch.Tensor: | |
mod_shift, mod_scale, mod_gate = self.modulation(vec).chunk(3, dim=-1) | |
x_mod = modulate(self.pre_norm(x), shift=mod_shift, scale=mod_scale) | |
qkv, mlp = torch.split( | |
self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1 | |
) | |
q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num) | |
# Apply QK-Norm if needed. | |
q = self.q_norm(q).to(v) | |
k = self.k_norm(k).to(v) | |
# Apply RoPE if needed. | |
if freqs_cis is not None: | |
img_q, txt_q = q[:, :-txt_len, :, :], q[:, -txt_len:, :, :] | |
img_k, txt_k = k[:, :-txt_len, :, :], k[:, -txt_len:, :, :] | |
img_qq, img_kk = apply_rotary_emb(img_q, img_k, freqs_cis, head_first=False) | |
assert ( | |
img_qq.shape == img_q.shape and img_kk.shape == img_k.shape | |
), f"img_kk: {img_qq.shape}, img_q: {img_q.shape}, img_kk: {img_kk.shape}, img_k: {img_k.shape}" | |
img_q, img_k = img_qq, img_kk | |
q = torch.cat((img_q, txt_q), dim=1) | |
k = torch.cat((img_k, txt_k), dim=1) | |
# Compute attention. | |
assert ( | |
cu_seqlens_q.shape[0] == 2 * x.shape[0] + 1 | |
), f"cu_seqlens_q.shape:{cu_seqlens_q.shape}, x.shape[0]:{x.shape[0]}" | |
# attention computation start | |
if not self.hybrid_seq_parallel_attn: | |
attn = attention( | |
q, | |
k, | |
v, | |
cu_seqlens_q=cu_seqlens_q, | |
cu_seqlens_kv=cu_seqlens_kv, | |
max_seqlen_q=max_seqlen_q, | |
max_seqlen_kv=max_seqlen_kv, | |
batch_size=x.shape[0], | |
) | |
else: | |
attn = parallel_attention( | |
self.hybrid_seq_parallel_attn, | |
q, | |
k, | |
v, | |
img_q_len=img_q.shape[1], | |
img_kv_len=img_k.shape[1], | |
cu_seqlens_q=cu_seqlens_q, | |
cu_seqlens_kv=cu_seqlens_kv | |
) | |
# attention computation end | |
# Compute activation in mlp stream, cat again and run second linear layer. | |
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2)) | |
return x + apply_gate(output, gate=mod_gate) | |
class HYVideoDiffusionTransformer(ModelMixin, ConfigMixin): | |
""" | |
HunyuanVideo Transformer backbone | |
Inherited from ModelMixin and ConfigMixin for compatibility with diffusers' sampler StableDiffusionPipeline. | |
Reference: | |
[1] Flux.1: https://github.com/black-forest-labs/flux | |
[2] MMDiT: http://arxiv.org/abs/2403.03206 | |
Parameters | |
---------- | |
args: argparse.Namespace | |
The arguments parsed by argparse. | |
patch_size: list | |
The size of the patch. | |
in_channels: int | |
The number of input channels. | |
out_channels: int | |
The number of output channels. | |
hidden_size: int | |
The hidden size of the transformer backbone. | |
heads_num: int | |
The number of attention heads. | |
mlp_width_ratio: float | |
The ratio of the hidden size of the MLP in the transformer block. | |
mlp_act_type: str | |
The activation function of the MLP in the transformer block. | |
depth_double_blocks: int | |
The number of transformer blocks in the double blocks. | |
depth_single_blocks: int | |
The number of transformer blocks in the single blocks. | |
rope_dim_list: list | |
The dimension of the rotary embedding for t, h, w. | |
qkv_bias: bool | |
Whether to use bias in the qkv linear layer. | |
qk_norm: bool | |
Whether to use qk norm. | |
qk_norm_type: str | |
The type of qk norm. | |
guidance_embed: bool | |
Whether to use guidance embedding for distillation. | |
text_projection: str | |
The type of the text projection, default is single_refiner. | |
use_attention_mask: bool | |
Whether to use attention mask for text encoder. | |
dtype: torch.dtype | |
The dtype of the model. | |
device: torch.device | |
The device of the model. | |
""" | |
def __init__( | |
self, | |
args: Any, | |
patch_size: list = [1, 2, 2], | |
in_channels: int = 4, # Should be VAE.config.latent_channels. | |
out_channels: int = None, | |
hidden_size: int = 3072, | |
heads_num: int = 24, | |
mlp_width_ratio: float = 4.0, | |
mlp_act_type: str = "gelu_tanh", | |
mm_double_blocks_depth: int = 20, | |
mm_single_blocks_depth: int = 40, | |
rope_dim_list: List[int] = [16, 56, 56], | |
qkv_bias: bool = True, | |
qk_norm: bool = True, | |
qk_norm_type: str = "rms", | |
guidance_embed: bool = False, # For modulation. | |
text_projection: str = "single_refiner", | |
use_attention_mask: bool = True, | |
dtype: Optional[torch.dtype] = None, | |
device: Optional[torch.device] = None, | |
): | |
factory_kwargs = {"device": device, "dtype": dtype} | |
super().__init__() | |
self.patch_size = patch_size | |
self.in_channels = in_channels | |
self.out_channels = in_channels if out_channels is None else out_channels | |
self.unpatchify_channels = self.out_channels | |
self.guidance_embed = guidance_embed | |
self.rope_dim_list = rope_dim_list | |
# Text projection. Default to linear projection. | |
# Alternative: TokenRefiner. See more details (LI-DiT): http://arxiv.org/abs/2406.11831 | |
self.use_attention_mask = use_attention_mask | |
self.text_projection = text_projection | |
self.text_states_dim = args.text_states_dim | |
self.text_states_dim_2 = args.text_states_dim_2 | |
if hidden_size % heads_num != 0: | |
raise ValueError( | |
f"Hidden size {hidden_size} must be divisible by heads_num {heads_num}" | |
) | |
pe_dim = hidden_size // heads_num | |
if sum(rope_dim_list) != pe_dim: | |
raise ValueError( | |
f"Got {rope_dim_list} but expected positional dim {pe_dim}" | |
) | |
self.hidden_size = hidden_size | |
self.heads_num = heads_num | |
# image projection | |
self.img_in = PatchEmbed( | |
self.patch_size, self.in_channels, self.hidden_size, **factory_kwargs | |
) | |
# text projection | |
if self.text_projection == "linear": | |
self.txt_in = TextProjection( | |
self.text_states_dim, | |
self.hidden_size, | |
get_activation_layer("silu"), | |
**factory_kwargs, | |
) | |
elif self.text_projection == "single_refiner": | |
self.txt_in = SingleTokenRefiner( | |
self.text_states_dim, hidden_size, heads_num, depth=2, **factory_kwargs | |
) | |
else: | |
raise NotImplementedError( | |
f"Unsupported text_projection: {self.text_projection}" | |
) | |
# time modulation | |
self.time_in = TimestepEmbedder( | |
self.hidden_size, get_activation_layer("silu"), **factory_kwargs | |
) | |
# text modulation | |
self.vector_in = MLPEmbedder( | |
self.text_states_dim_2, self.hidden_size, **factory_kwargs | |
) | |
# guidance modulation | |
self.guidance_in = ( | |
TimestepEmbedder( | |
self.hidden_size, get_activation_layer("silu"), **factory_kwargs | |
) | |
if guidance_embed | |
else None | |
) | |
# double blocks | |
self.double_blocks = nn.ModuleList( | |
[ | |
MMDoubleStreamBlock( | |
self.hidden_size, | |
self.heads_num, | |
mlp_width_ratio=mlp_width_ratio, | |
mlp_act_type=mlp_act_type, | |
qk_norm=qk_norm, | |
qk_norm_type=qk_norm_type, | |
qkv_bias=qkv_bias, | |
**factory_kwargs, | |
) | |
for _ in range(mm_double_blocks_depth) | |
] | |
) | |
# single blocks | |
self.single_blocks = nn.ModuleList( | |
[ | |
MMSingleStreamBlock( | |
self.hidden_size, | |
self.heads_num, | |
mlp_width_ratio=mlp_width_ratio, | |
mlp_act_type=mlp_act_type, | |
qk_norm=qk_norm, | |
qk_norm_type=qk_norm_type, | |
**factory_kwargs, | |
) | |
for _ in range(mm_single_blocks_depth) | |
] | |
) | |
self.final_layer = FinalLayer( | |
self.hidden_size, | |
self.patch_size, | |
self.out_channels, | |
get_activation_layer("silu"), | |
**factory_kwargs, | |
) | |
def enable_deterministic(self): | |
for block in self.double_blocks: | |
block.enable_deterministic() | |
for block in self.single_blocks: | |
block.enable_deterministic() | |
def disable_deterministic(self): | |
for block in self.double_blocks: | |
block.disable_deterministic() | |
for block in self.single_blocks: | |
block.disable_deterministic() | |
def forward( | |
self, | |
x: torch.Tensor, | |
t: torch.Tensor, # Should be in range(0, 1000). | |
text_states: torch.Tensor = None, | |
text_mask: torch.Tensor = None, # Now we don't use it. | |
text_states_2: Optional[torch.Tensor] = None, # Text embedding for modulation. | |
freqs_cos: Optional[torch.Tensor] = None, | |
freqs_sin: Optional[torch.Tensor] = None, | |
guidance: torch.Tensor = None, # Guidance for modulation, should be cfg_scale x 1000. | |
return_dict: bool = True, | |
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]: | |
out = {} | |
img = x | |
txt = text_states | |
_, _, ot, oh, ow = x.shape | |
tt, th, tw = ( | |
ot // self.patch_size[0], | |
oh // self.patch_size[1], | |
ow // self.patch_size[2], | |
) | |
# Prepare modulation vectors. | |
vec = self.time_in(t) | |
# text modulation | |
vec = vec + self.vector_in(text_states_2) | |
# guidance modulation | |
if self.guidance_embed: | |
if guidance is None: | |
raise ValueError( | |
"Didn't get guidance strength for guidance distilled model." | |
) | |
# our timestep_embedding is merged into guidance_in(TimestepEmbedder) | |
vec = vec + self.guidance_in(guidance) | |
# Embed image and text. | |
img = self.img_in(img) | |
if self.text_projection == "linear": | |
txt = self.txt_in(txt) | |
elif self.text_projection == "single_refiner": | |
txt = self.txt_in(txt, t, text_mask if self.use_attention_mask else None) | |
else: | |
raise NotImplementedError( | |
f"Unsupported text_projection: {self.text_projection}" | |
) | |
txt_seq_len = txt.shape[1] | |
img_seq_len = img.shape[1] | |
# Compute cu_squlens and max_seqlen for flash attention | |
cu_seqlens_q = get_cu_seqlens(text_mask, img_seq_len) | |
cu_seqlens_kv = cu_seqlens_q | |
max_seqlen_q = img_seq_len + txt_seq_len | |
max_seqlen_kv = max_seqlen_q | |
freqs_cis = (freqs_cos, freqs_sin) if freqs_cos is not None else None | |
# --------------------- Pass through DiT blocks ------------------------ | |
for _, block in enumerate(self.double_blocks): | |
double_block_args = [ | |
img, | |
txt, | |
vec, | |
cu_seqlens_q, | |
cu_seqlens_kv, | |
max_seqlen_q, | |
max_seqlen_kv, | |
freqs_cis, | |
] | |
img, txt = block(*double_block_args) | |
# Merge txt and img to pass through single stream blocks. | |
x = torch.cat((img, txt), 1) | |
if len(self.single_blocks) > 0: | |
for _, block in enumerate(self.single_blocks): | |
single_block_args = [ | |
x, | |
vec, | |
txt_seq_len, | |
cu_seqlens_q, | |
cu_seqlens_kv, | |
max_seqlen_q, | |
max_seqlen_kv, | |
(freqs_cos, freqs_sin), | |
] | |
x = block(*single_block_args) | |
img = x[:, :img_seq_len, ...] | |
# ---------------------------- Final layer ------------------------------ | |
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels) | |
img = self.unpatchify(img, tt, th, tw) | |
if return_dict: | |
out["x"] = img | |
return out | |
return img | |
def unpatchify(self, x, t, h, w): | |
""" | |
x: (N, T, patch_size**2 * C) | |
imgs: (N, H, W, C) | |
""" | |
c = self.unpatchify_channels | |
pt, ph, pw = self.patch_size | |
assert t * h * w == x.shape[1] | |
x = x.reshape(shape=(x.shape[0], t, h, w, c, pt, ph, pw)) | |
x = torch.einsum("nthwcopq->nctohpwq", x) | |
imgs = x.reshape(shape=(x.shape[0], c, t * pt, h * ph, w * pw)) | |
return imgs | |
def params_count(self): | |
counts = { | |
"double": sum( | |
[ | |
sum(p.numel() for p in block.img_attn_qkv.parameters()) | |
+ sum(p.numel() for p in block.img_attn_proj.parameters()) | |
+ sum(p.numel() for p in block.img_mlp.parameters()) | |
+ sum(p.numel() for p in block.txt_attn_qkv.parameters()) | |
+ sum(p.numel() for p in block.txt_attn_proj.parameters()) | |
+ sum(p.numel() for p in block.txt_mlp.parameters()) | |
for block in self.double_blocks | |
] | |
), | |
"single": sum( | |
[ | |
sum(p.numel() for p in block.linear1.parameters()) | |
+ sum(p.numel() for p in block.linear2.parameters()) | |
for block in self.single_blocks | |
] | |
), | |
"total": sum(p.numel() for p in self.parameters()), | |
} | |
counts["attn+mlp"] = counts["double"] + counts["single"] | |
return counts | |
################################################################################# | |
# HunyuanVideo Configs # | |
################################################################################# | |
HUNYUAN_VIDEO_CONFIG = { | |
"HYVideo-T/2": { | |
"mm_double_blocks_depth": 20, | |
"mm_single_blocks_depth": 40, | |
"rope_dim_list": [16, 56, 56], | |
"hidden_size": 3072, | |
"heads_num": 24, | |
"mlp_width_ratio": 4, | |
}, | |
"HYVideo-T/2-cfgdistill": { | |
"mm_double_blocks_depth": 20, | |
"mm_single_blocks_depth": 40, | |
"rope_dim_list": [16, 56, 56], | |
"hidden_size": 3072, | |
"heads_num": 24, | |
"mlp_width_ratio": 4, | |
"guidance_embed": True, | |
}, | |
} | |