Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
def get_fp_maxval(bits=8, mantissa_bit=3, sign_bits=1): | |
_bits = torch.tensor(bits) | |
_mantissa_bit = torch.tensor(mantissa_bit) | |
_sign_bits = torch.tensor(sign_bits) | |
M = torch.clamp(torch.round(_mantissa_bit), 1, _bits - _sign_bits) | |
E = _bits - _sign_bits - M | |
bias = 2 ** (E - 1) - 1 | |
mantissa = 1 | |
for i in range(mantissa_bit - 1): | |
mantissa += 1 / (2 ** (i+1)) | |
maxval = mantissa * 2 ** (2**E - 1 - bias) | |
return maxval | |
def quantize_to_fp8(x, bits=8, mantissa_bit=3, sign_bits=1): | |
""" | |
Default is E4M3. | |
""" | |
bits = torch.tensor(bits) | |
mantissa_bit = torch.tensor(mantissa_bit) | |
sign_bits = torch.tensor(sign_bits) | |
M = torch.clamp(torch.round(mantissa_bit), 1, bits - sign_bits) | |
E = bits - sign_bits - M | |
bias = 2 ** (E - 1) - 1 | |
mantissa = 1 | |
for i in range(mantissa_bit - 1): | |
mantissa += 1 / (2 ** (i+1)) | |
maxval = mantissa * 2 ** (2**E - 1 - bias) | |
minval = - maxval | |
minval = - maxval if sign_bits == 1 else torch.zeros_like(maxval) | |
input_clamp = torch.min(torch.max(x, minval), maxval) | |
log_scales = torch.clamp((torch.floor(torch.log2(torch.abs(input_clamp)) + bias)).detach(), 1.0) | |
log_scales = 2.0 ** (log_scales - M - bias.type(x.dtype)) | |
# dequant | |
qdq_out = torch.round(input_clamp / log_scales) * log_scales | |
return qdq_out, log_scales | |
def fp8_tensor_quant(x, scale, bits=8, mantissa_bit=3, sign_bits=1): | |
for i in range(len(x.shape) - 1): | |
scale = scale.unsqueeze(-1) | |
new_x = x / scale | |
quant_dequant_x, log_scales = quantize_to_fp8(new_x, bits=bits, mantissa_bit=mantissa_bit, sign_bits=sign_bits) | |
return quant_dequant_x, scale, log_scales | |
def fp8_activation_dequant(qdq_out, scale, dtype): | |
qdq_out = qdq_out.type(dtype) | |
quant_dequant_x = qdq_out * scale.to(dtype) | |
return quant_dequant_x | |
def fp8_linear_forward(cls, original_dtype, input): | |
weight_dtype = cls.weight.dtype | |
##### | |
if cls.weight.dtype != torch.float8_e4m3fn: | |
maxval = get_fp_maxval() | |
scale = torch.max(torch.abs(cls.weight.flatten())) / maxval | |
linear_weight, scale, log_scales = fp8_tensor_quant(cls.weight, scale) | |
linear_weight = linear_weight.to(torch.float8_e4m3fn) | |
weight_dtype = linear_weight.dtype | |
else: | |
scale = cls.fp8_scale.to(cls.weight.device) | |
linear_weight = cls.weight | |
##### | |
if weight_dtype == torch.float8_e4m3fn and cls.weight.sum() != 0: | |
if True or len(input.shape) == 3: | |
cls_dequant = fp8_activation_dequant(linear_weight, scale, original_dtype) | |
if cls.bias != None: | |
output = F.linear(input, cls_dequant, cls.bias) | |
else: | |
output = F.linear(input, cls_dequant) | |
return output | |
else: | |
return cls.original_forward(input.to(original_dtype)) | |
else: | |
return cls.original_forward(input) | |
def convert_fp8_linear(module, dit_weight_path, original_dtype, params_to_keep={}): | |
setattr(module, "fp8_matmul_enabled", True) | |
# loading fp8 mapping file | |
fp8_map_path = dit_weight_path.replace('.pt', '_map.pt') | |
if os.path.exists(fp8_map_path): | |
fp8_map = torch.load(fp8_map_path, map_location=lambda storage, loc: storage) | |
else: | |
raise ValueError(f"Invalid fp8_map path: {fp8_map_path}.") | |
fp8_layers = [] | |
for key, layer in module.named_modules(): | |
if isinstance(layer, nn.Linear) and ('double_blocks' in key or 'single_blocks' in key): | |
fp8_layers.append(key) | |
original_forward = layer.forward | |
layer.weight = torch.nn.Parameter(layer.weight.to(torch.float8_e4m3fn)) | |
setattr(layer, "fp8_scale", fp8_map[key].to(dtype=original_dtype)) | |
setattr(layer, "original_forward", original_forward) | |
setattr(layer, "forward", lambda input, m=layer: fp8_linear_forward(m, original_dtype, input)) | |