Spaces:
Running
Running
mcp_server=True
Browse files
app.py
CHANGED
@@ -1,6 +1,91 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
input_image = gr.Image(type='pil', label='Input Image')
|
6 |
input_model_image = gr.Radio([('x2', 2), ('x4', 4), ('x8', 8)], type="value", value=4, label="Model Upscale/Enhance Type")
|
@@ -11,20 +96,20 @@ tab_img = gr.Interface(
|
|
11 |
fn=infer_image,
|
12 |
inputs=[input_image, input_model_image],
|
13 |
outputs=output_image,
|
14 |
-
title="Real-ESRGAN
|
15 |
description="Gradio UI for Real-ESRGAN Pytorch version. To use it, simply upload your image and choose the model. Read more at the links below. Please click submit only once <br>Credits: [Nick088](https://linktr.ee/Nick088), Xinntao, Tencent, Geeve George, ai-forever, daroche <br><p style='text-align: center'><a href='https://github.com/Nick088/Real-ESRGAN_Pytorch'>Github Repo</a></p>"
|
16 |
)
|
17 |
|
18 |
input_video = gr.Video(label='Input Video')
|
19 |
input_model_video = gr.Radio([('x2', 2), ('x4', 4), ('x8', 8)], type="value", value=2, label="Model Upscale/Enhance Type")
|
20 |
submit_video_button = gr.Button('Submit')
|
21 |
-
output_video = gr.Video(label='Output Video')
|
22 |
|
23 |
tab_vid = gr.Interface(
|
24 |
fn=infer_video,
|
25 |
inputs=[input_video, input_model_video],
|
26 |
outputs=output_video,
|
27 |
-
title="Real-ESRGAN
|
28 |
description="Gradio UI for Real-ESRGAN Pytorch version. To use it, simply upload your video and choose the model. Read more at the links below. Please click submit only once <br>Credits: [Nick088](https://linktr.ee/Nick088), Xinntao, Tencent, Geeve George, ai-forever, daroche <br><p style='text-align: center'><a href='https://arxiv.org/abs/2107.10833'>Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data</a> | <a href='https://github.com/ai-forever/Real-ESRGAN'>Github Repo</a></p>",
|
29 |
examples=[
|
30 |
[
|
@@ -38,4 +123,4 @@ tab_vid = gr.Interface(
|
|
38 |
|
39 |
demo = gr.TabbedInterface([tab_img, tab_vid], ["Image", "Video"])
|
40 |
|
41 |
-
demo.launch(debug=True, show_error=True, share=True)
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
+
from PIL import Image
|
4 |
+
import cv2 as cv
|
5 |
+
import torch
|
6 |
+
from RealESRGAN import RealESRGAN
|
7 |
+
import tempfile
|
8 |
+
import numpy as np
|
9 |
+
import tqdm
|
10 |
+
import ffmpeg
|
11 |
+
import spaces
|
12 |
+
|
13 |
+
|
14 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
15 |
+
|
16 |
+
@spaces.GPU(duration=60)
|
17 |
+
def infer_image(img: Image.Image, size_modifier: int ) -> Image.Image:
|
18 |
+
if img is None:
|
19 |
+
raise Exception("Image not uploaded")
|
20 |
+
|
21 |
+
width, height = img.size
|
22 |
+
|
23 |
+
if width >= 5000 or height >= 5000:
|
24 |
+
raise Exception("The image is too large.")
|
25 |
+
|
26 |
+
model = RealESRGAN(device, scale=size_modifier)
|
27 |
+
model.load_weights(f'weights/RealESRGAN_x{size_modifier}.pth', download=False)
|
28 |
+
|
29 |
+
result = model.predict(img.convert('RGB'))
|
30 |
+
print(f"Image size ({device}): {size_modifier} ... OK")
|
31 |
+
return result
|
32 |
+
|
33 |
+
@spaces.GPU(duration=120)
|
34 |
+
def infer_video(video_filepath: str, size_modifier: int) -> str:
|
35 |
+
model = RealESRGAN(device, scale=size_modifier)
|
36 |
+
model.load_weights(f'weights/RealESRGAN_x{size_modifier}.pth', download=False)
|
37 |
+
|
38 |
+
cap = cv.VideoCapture(video_filepath)
|
39 |
+
|
40 |
+
tmpfile = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
|
41 |
+
vid_output = tmpfile.name
|
42 |
+
tmpfile.close()
|
43 |
+
|
44 |
+
# Check if the input video has an audio stream
|
45 |
+
probe = ffmpeg.probe(video_filepath)
|
46 |
+
has_audio = any(stream['codec_type'] == 'audio' for stream in probe['streams'])
|
47 |
+
|
48 |
+
if has_audio:
|
49 |
+
# Extract audio from the input video
|
50 |
+
audio_file = video_filepath.replace(".mp4", ".wav")
|
51 |
+
ffmpeg.input(video_filepath).output(audio_file, format='wav', ac=1).run(overwrite_output=True)
|
52 |
+
|
53 |
+
vid_writer = cv.VideoWriter(
|
54 |
+
vid_output,
|
55 |
+
fourcc=cv.VideoWriter.fourcc(*'mp4v'),
|
56 |
+
fps=cap.get(cv.CAP_PROP_FPS),
|
57 |
+
frameSize=(int(cap.get(cv.CAP_PROP_FRAME_WIDTH)) * size_modifier, int(cap.get(cv.CAP_PROP_FRAME_HEIGHT)) * size_modifier)
|
58 |
+
)
|
59 |
+
|
60 |
+
n_frames = int(cap.get(cv.CAP_PROP_FRAME_COUNT))
|
61 |
+
|
62 |
+
for _ in tqdm.tqdm(range(n_frames)):
|
63 |
+
ret, frame = cap.read()
|
64 |
+
if not ret:
|
65 |
+
break
|
66 |
+
|
67 |
+
frame = cv.cvtColor(frame, cv.COLOR_BGR2RGB)
|
68 |
+
frame = Image.fromarray(frame)
|
69 |
+
|
70 |
+
upscaled_frame = model.predict(frame.convert('RGB'))
|
71 |
+
|
72 |
+
upscaled_frame = np.array(upscaled_frame)
|
73 |
+
upscaled_frame = cv.cvtColor(upscaled_frame, cv.COLOR_RGB2BGR)
|
74 |
+
|
75 |
+
vid_writer.write(upscaled_frame)
|
76 |
+
|
77 |
+
vid_writer.release()
|
78 |
+
|
79 |
+
if has_audio:
|
80 |
+
# Re-encode the video with the modified audio
|
81 |
+
ffmpeg.input(vid_output).output(video_filepath.replace(".mp4", "_upscaled.mp4"), vcodec='libx264', acodec='aac', audio_bitrate='320k').run(overwrite_output=True)
|
82 |
+
|
83 |
+
# Replace the original audio with the upscaled audio
|
84 |
+
ffmpeg.input(audio_file).output(video_filepath.replace(".mp4", "_upscaled.mp4"), acodec='aac', audio_bitrate='320k').run(overwrite_output=True)
|
85 |
+
|
86 |
+
print(f"Video file : {video_filepath}")
|
87 |
+
|
88 |
+
return vid_output.replace(".mp4", "_upscaled.mp4") if has_audio else vid_output
|
89 |
|
90 |
input_image = gr.Image(type='pil', label='Input Image')
|
91 |
input_model_image = gr.Radio([('x2', 2), ('x4', 4), ('x8', 8)], type="value", value=4, label="Model Upscale/Enhance Type")
|
|
|
96 |
fn=infer_image,
|
97 |
inputs=[input_image, input_model_image],
|
98 |
outputs=output_image,
|
99 |
+
title="Real-ESRGAN",
|
100 |
description="Gradio UI for Real-ESRGAN Pytorch version. To use it, simply upload your image and choose the model. Read more at the links below. Please click submit only once <br>Credits: [Nick088](https://linktr.ee/Nick088), Xinntao, Tencent, Geeve George, ai-forever, daroche <br><p style='text-align: center'><a href='https://github.com/Nick088/Real-ESRGAN_Pytorch'>Github Repo</a></p>"
|
101 |
)
|
102 |
|
103 |
input_video = gr.Video(label='Input Video')
|
104 |
input_model_video = gr.Radio([('x2', 2), ('x4', 4), ('x8', 8)], type="value", value=2, label="Model Upscale/Enhance Type")
|
105 |
submit_video_button = gr.Button('Submit')
|
106 |
+
output_video = gr.Video(label='Output Video', autoplay = True)
|
107 |
|
108 |
tab_vid = gr.Interface(
|
109 |
fn=infer_video,
|
110 |
inputs=[input_video, input_model_video],
|
111 |
outputs=output_video,
|
112 |
+
title="Real-ESRGAN",
|
113 |
description="Gradio UI for Real-ESRGAN Pytorch version. To use it, simply upload your video and choose the model. Read more at the links below. Please click submit only once <br>Credits: [Nick088](https://linktr.ee/Nick088), Xinntao, Tencent, Geeve George, ai-forever, daroche <br><p style='text-align: center'><a href='https://arxiv.org/abs/2107.10833'>Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data</a> | <a href='https://github.com/ai-forever/Real-ESRGAN'>Github Repo</a></p>",
|
114 |
examples=[
|
115 |
[
|
|
|
123 |
|
124 |
demo = gr.TabbedInterface([tab_img, tab_vid], ["Image", "Video"])
|
125 |
|
126 |
+
demo.launch(mcp_server=True, debug=True, show_error=True, share=True)
|