Spaces:
Running
Running
Delete infer.py
Browse files
infer.py
DELETED
@@ -1,94 +0,0 @@
|
|
1 |
-
from PIL import Image
|
2 |
-
import cv2 as cv
|
3 |
-
import torch
|
4 |
-
from RealESRGAN import RealESRGAN
|
5 |
-
import tempfile
|
6 |
-
import numpy as np
|
7 |
-
import tqdm
|
8 |
-
import ffmpeg
|
9 |
-
|
10 |
-
try:
|
11 |
-
import spaces
|
12 |
-
except:
|
13 |
-
class spaces():
|
14 |
-
def GPU(*args, **kwargs):
|
15 |
-
def decorator(function):
|
16 |
-
return lambda *dummy_args, **dummy_kwargs: function(*dummy_args, **dummy_kwargs)
|
17 |
-
return decorator
|
18 |
-
|
19 |
-
|
20 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
21 |
-
|
22 |
-
@spaces.GPU(duration=60)
|
23 |
-
def infer_image(img: Image.Image, size_modifier: int ) -> Image.Image:
|
24 |
-
if img is None:
|
25 |
-
raise Exception("Image not uploaded")
|
26 |
-
|
27 |
-
width, height = img.size
|
28 |
-
|
29 |
-
if width >= 5000 or height >= 5000:
|
30 |
-
raise Exception("The image is too large.")
|
31 |
-
|
32 |
-
model = RealESRGAN(device, scale=size_modifier)
|
33 |
-
model.load_weights(f'weights/RealESRGAN_x{size_modifier}.pth', download=False)
|
34 |
-
|
35 |
-
result = model.predict(img.convert('RGB'))
|
36 |
-
print(f"Image size ({device}): {size_modifier} ... OK")
|
37 |
-
return result
|
38 |
-
|
39 |
-
@spaces.GPU(duration=60)
|
40 |
-
def infer_video(video_filepath: str, size_modifier: int) -> str:
|
41 |
-
model = RealESRGAN(device, scale=size_modifier)
|
42 |
-
model.load_weights(f'weights/RealESRGAN_x{size_modifier}.pth', download=False)
|
43 |
-
|
44 |
-
cap = cv.VideoCapture(video_filepath)
|
45 |
-
|
46 |
-
tmpfile = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
|
47 |
-
vid_output = tmpfile.name
|
48 |
-
tmpfile.close()
|
49 |
-
|
50 |
-
# Check if the input video has an audio stream
|
51 |
-
probe = ffmpeg.probe(video_filepath)
|
52 |
-
has_audio = any(stream['codec_type'] == 'audio' for stream in probe['streams'])
|
53 |
-
|
54 |
-
if has_audio:
|
55 |
-
# Extract audio from the input video
|
56 |
-
audio_file = video_filepath.replace(".mp4", ".wav")
|
57 |
-
ffmpeg.input(video_filepath).output(audio_file, format='wav', ac=1).run(overwrite_output=True)
|
58 |
-
|
59 |
-
vid_writer = cv.VideoWriter(
|
60 |
-
vid_output,
|
61 |
-
fourcc=cv.VideoWriter.fourcc(*'mp4v'),
|
62 |
-
fps=cap.get(cv.CAP_PROP_FPS),
|
63 |
-
frameSize=(int(cap.get(cv.CAP_PROP_FRAME_WIDTH)) * size_modifier, int(cap.get(cv.CAP_PROP_FRAME_HEIGHT)) * size_modifier)
|
64 |
-
)
|
65 |
-
|
66 |
-
n_frames = int(cap.get(cv.CAP_PROP_FRAME_COUNT))
|
67 |
-
|
68 |
-
for _ in tqdm.tqdm(range(n_frames)):
|
69 |
-
ret, frame = cap.read()
|
70 |
-
if not ret:
|
71 |
-
break
|
72 |
-
|
73 |
-
frame = cv.cvtColor(frame, cv.COLOR_BGR2RGB)
|
74 |
-
frame = Image.fromarray(frame)
|
75 |
-
|
76 |
-
upscaled_frame = model.predict(frame.convert('RGB'))
|
77 |
-
|
78 |
-
upscaled_frame = np.array(upscaled_frame)
|
79 |
-
upscaled_frame = cv.cvtColor(upscaled_frame, cv.COLOR_RGB2BGR)
|
80 |
-
|
81 |
-
vid_writer.write(upscaled_frame)
|
82 |
-
|
83 |
-
vid_writer.release()
|
84 |
-
|
85 |
-
if has_audio:
|
86 |
-
# Re-encode the video with the modified audio
|
87 |
-
ffmpeg.input(vid_output).output(video_filepath.replace(".mp4", "_upscaled.mp4"), vcodec='libx264', acodec='aac', audio_bitrate='320k').run(overwrite_output=True)
|
88 |
-
|
89 |
-
# Replace the original audio with the upscaled audio
|
90 |
-
ffmpeg.input(audio_file).output(video_filepath.replace(".mp4", "_upscaled.mp4"), acodec='aac', audio_bitrate='320k').run(overwrite_output=True)
|
91 |
-
|
92 |
-
print(f"Video file : {video_filepath}")
|
93 |
-
|
94 |
-
return vid_output.replace(".mp4", "_upscaled.mp4") if has_audio else vid_output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|