' instead of "
Browse files- hyvideo/modules/fp8_optimization.py +102 -102
hyvideo/modules/fp8_optimization.py
CHANGED
@@ -1,102 +1,102 @@
|
|
1 |
-
import os
|
2 |
-
|
3 |
-
import torch
|
4 |
-
import torch.nn as nn
|
5 |
-
from torch.nn import functional as F
|
6 |
-
|
7 |
-
def get_fp_maxval(bits=8, mantissa_bit=3, sign_bits=1):
|
8 |
-
_bits = torch.tensor(bits)
|
9 |
-
_mantissa_bit = torch.tensor(mantissa_bit)
|
10 |
-
_sign_bits = torch.tensor(sign_bits)
|
11 |
-
M = torch.clamp(torch.round(_mantissa_bit), 1, _bits - _sign_bits)
|
12 |
-
E = _bits - _sign_bits - M
|
13 |
-
bias = 2 ** (E - 1) - 1
|
14 |
-
mantissa = 1
|
15 |
-
for i in range(mantissa_bit - 1):
|
16 |
-
mantissa += 1 / (2 ** (i+1))
|
17 |
-
maxval = mantissa * 2 ** (2**E - 1 - bias)
|
18 |
-
return maxval
|
19 |
-
|
20 |
-
def quantize_to_fp8(x, bits=8, mantissa_bit=3, sign_bits=1):
|
21 |
-
"""
|
22 |
-
Default is E4M3.
|
23 |
-
"""
|
24 |
-
bits = torch.tensor(bits)
|
25 |
-
mantissa_bit = torch.tensor(mantissa_bit)
|
26 |
-
sign_bits = torch.tensor(sign_bits)
|
27 |
-
M = torch.clamp(torch.round(mantissa_bit), 1, bits - sign_bits)
|
28 |
-
E = bits - sign_bits - M
|
29 |
-
bias = 2 ** (E - 1) - 1
|
30 |
-
mantissa = 1
|
31 |
-
for i in range(mantissa_bit - 1):
|
32 |
-
mantissa += 1 / (2 ** (i+1))
|
33 |
-
maxval = mantissa * 2 ** (2**E - 1 - bias)
|
34 |
-
minval = - maxval
|
35 |
-
minval = - maxval if sign_bits == 1 else torch.zeros_like(maxval)
|
36 |
-
input_clamp = torch.min(torch.max(x, minval), maxval)
|
37 |
-
log_scales = torch.clamp((torch.floor(torch.log2(torch.abs(input_clamp)) + bias)).detach(), 1.0)
|
38 |
-
log_scales = 2.0 ** (log_scales - M - bias.type(x.dtype))
|
39 |
-
# dequant
|
40 |
-
qdq_out = torch.round(input_clamp / log_scales) * log_scales
|
41 |
-
return qdq_out, log_scales
|
42 |
-
|
43 |
-
def fp8_tensor_quant(x, scale, bits=8, mantissa_bit=3, sign_bits=1):
|
44 |
-
for i in range(len(x.shape) - 1):
|
45 |
-
scale = scale.unsqueeze(-1)
|
46 |
-
new_x = x / scale
|
47 |
-
quant_dequant_x, log_scales = quantize_to_fp8(new_x, bits=bits, mantissa_bit=mantissa_bit, sign_bits=sign_bits)
|
48 |
-
return quant_dequant_x, scale, log_scales
|
49 |
-
|
50 |
-
def fp8_activation_dequant(qdq_out, scale, dtype):
|
51 |
-
qdq_out = qdq_out.type(dtype)
|
52 |
-
quant_dequant_x = qdq_out * scale.to(dtype)
|
53 |
-
return quant_dequant_x
|
54 |
-
|
55 |
-
def fp8_linear_forward(cls, original_dtype, input):
|
56 |
-
weight_dtype = cls.weight.dtype
|
57 |
-
#####
|
58 |
-
if cls.weight.dtype != torch.float8_e4m3fn:
|
59 |
-
maxval = get_fp_maxval()
|
60 |
-
scale = torch.max(torch.abs(cls.weight.flatten())) / maxval
|
61 |
-
linear_weight, scale, log_scales = fp8_tensor_quant(cls.weight, scale)
|
62 |
-
linear_weight = linear_weight.to(torch.float8_e4m3fn)
|
63 |
-
weight_dtype = linear_weight.dtype
|
64 |
-
else:
|
65 |
-
scale = cls.fp8_scale.to(cls.weight.device)
|
66 |
-
linear_weight = cls.weight
|
67 |
-
#####
|
68 |
-
|
69 |
-
if weight_dtype == torch.float8_e4m3fn and cls.weight.sum() != 0:
|
70 |
-
if True or len(input.shape) == 3:
|
71 |
-
cls_dequant = fp8_activation_dequant(linear_weight, scale, original_dtype)
|
72 |
-
if cls.bias != None:
|
73 |
-
output = F.linear(input, cls_dequant, cls.bias)
|
74 |
-
else:
|
75 |
-
output = F.linear(input, cls_dequant)
|
76 |
-
return output
|
77 |
-
else:
|
78 |
-
return cls.original_forward(input.to(original_dtype))
|
79 |
-
else:
|
80 |
-
return cls.original_forward(input)
|
81 |
-
|
82 |
-
def convert_fp8_linear(module, dit_weight_path, original_dtype, params_to_keep={}):
|
83 |
-
setattr(module, "fp8_matmul_enabled", True)
|
84 |
-
|
85 |
-
# loading fp8 mapping file
|
86 |
-
fp8_map_path = dit_weight_path.replace(
|
87 |
-
if os.path.exists(fp8_map_path):
|
88 |
-
fp8_map = torch.load(fp8_map_path, map_location=lambda storage, loc: storage)
|
89 |
-
else:
|
90 |
-
raise ValueError(f"Invalid fp8_map path: {fp8_map_path}.")
|
91 |
-
|
92 |
-
fp8_layers = []
|
93 |
-
for key, layer in module.named_modules():
|
94 |
-
if isinstance(layer, nn.Linear) and ('double_blocks' in key or 'single_blocks' in key):
|
95 |
-
fp8_layers.append(key)
|
96 |
-
original_forward = layer.forward
|
97 |
-
layer.weight = torch.nn.Parameter(layer.weight.to(torch.float8_e4m3fn))
|
98 |
-
setattr(layer, "fp8_scale", fp8_map[key].to(dtype=original_dtype))
|
99 |
-
setattr(layer, "original_forward", original_forward)
|
100 |
-
setattr(layer, "forward", lambda input, m=layer: fp8_linear_forward(m, original_dtype, input))
|
101 |
-
|
102 |
-
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
def get_fp_maxval(bits=8, mantissa_bit=3, sign_bits=1):
|
8 |
+
_bits = torch.tensor(bits)
|
9 |
+
_mantissa_bit = torch.tensor(mantissa_bit)
|
10 |
+
_sign_bits = torch.tensor(sign_bits)
|
11 |
+
M = torch.clamp(torch.round(_mantissa_bit), 1, _bits - _sign_bits)
|
12 |
+
E = _bits - _sign_bits - M
|
13 |
+
bias = 2 ** (E - 1) - 1
|
14 |
+
mantissa = 1
|
15 |
+
for i in range(mantissa_bit - 1):
|
16 |
+
mantissa += 1 / (2 ** (i+1))
|
17 |
+
maxval = mantissa * 2 ** (2**E - 1 - bias)
|
18 |
+
return maxval
|
19 |
+
|
20 |
+
def quantize_to_fp8(x, bits=8, mantissa_bit=3, sign_bits=1):
|
21 |
+
"""
|
22 |
+
Default is E4M3.
|
23 |
+
"""
|
24 |
+
bits = torch.tensor(bits)
|
25 |
+
mantissa_bit = torch.tensor(mantissa_bit)
|
26 |
+
sign_bits = torch.tensor(sign_bits)
|
27 |
+
M = torch.clamp(torch.round(mantissa_bit), 1, bits - sign_bits)
|
28 |
+
E = bits - sign_bits - M
|
29 |
+
bias = 2 ** (E - 1) - 1
|
30 |
+
mantissa = 1
|
31 |
+
for i in range(mantissa_bit - 1):
|
32 |
+
mantissa += 1 / (2 ** (i+1))
|
33 |
+
maxval = mantissa * 2 ** (2**E - 1 - bias)
|
34 |
+
minval = - maxval
|
35 |
+
minval = - maxval if sign_bits == 1 else torch.zeros_like(maxval)
|
36 |
+
input_clamp = torch.min(torch.max(x, minval), maxval)
|
37 |
+
log_scales = torch.clamp((torch.floor(torch.log2(torch.abs(input_clamp)) + bias)).detach(), 1.0)
|
38 |
+
log_scales = 2.0 ** (log_scales - M - bias.type(x.dtype))
|
39 |
+
# dequant
|
40 |
+
qdq_out = torch.round(input_clamp / log_scales) * log_scales
|
41 |
+
return qdq_out, log_scales
|
42 |
+
|
43 |
+
def fp8_tensor_quant(x, scale, bits=8, mantissa_bit=3, sign_bits=1):
|
44 |
+
for i in range(len(x.shape) - 1):
|
45 |
+
scale = scale.unsqueeze(-1)
|
46 |
+
new_x = x / scale
|
47 |
+
quant_dequant_x, log_scales = quantize_to_fp8(new_x, bits=bits, mantissa_bit=mantissa_bit, sign_bits=sign_bits)
|
48 |
+
return quant_dequant_x, scale, log_scales
|
49 |
+
|
50 |
+
def fp8_activation_dequant(qdq_out, scale, dtype):
|
51 |
+
qdq_out = qdq_out.type(dtype)
|
52 |
+
quant_dequant_x = qdq_out * scale.to(dtype)
|
53 |
+
return quant_dequant_x
|
54 |
+
|
55 |
+
def fp8_linear_forward(cls, original_dtype, input):
|
56 |
+
weight_dtype = cls.weight.dtype
|
57 |
+
#####
|
58 |
+
if cls.weight.dtype != torch.float8_e4m3fn:
|
59 |
+
maxval = get_fp_maxval()
|
60 |
+
scale = torch.max(torch.abs(cls.weight.flatten())) / maxval
|
61 |
+
linear_weight, scale, log_scales = fp8_tensor_quant(cls.weight, scale)
|
62 |
+
linear_weight = linear_weight.to(torch.float8_e4m3fn)
|
63 |
+
weight_dtype = linear_weight.dtype
|
64 |
+
else:
|
65 |
+
scale = cls.fp8_scale.to(cls.weight.device)
|
66 |
+
linear_weight = cls.weight
|
67 |
+
#####
|
68 |
+
|
69 |
+
if weight_dtype == torch.float8_e4m3fn and cls.weight.sum() != 0:
|
70 |
+
if True or len(input.shape) == 3:
|
71 |
+
cls_dequant = fp8_activation_dequant(linear_weight, scale, original_dtype)
|
72 |
+
if cls.bias != None:
|
73 |
+
output = F.linear(input, cls_dequant, cls.bias)
|
74 |
+
else:
|
75 |
+
output = F.linear(input, cls_dequant)
|
76 |
+
return output
|
77 |
+
else:
|
78 |
+
return cls.original_forward(input.to(original_dtype))
|
79 |
+
else:
|
80 |
+
return cls.original_forward(input)
|
81 |
+
|
82 |
+
def convert_fp8_linear(module, dit_weight_path, original_dtype, params_to_keep={}):
|
83 |
+
setattr(module, "fp8_matmul_enabled", True)
|
84 |
+
|
85 |
+
# loading fp8 mapping file
|
86 |
+
fp8_map_path = dit_weight_path.replace(".pt", "_map.pt")
|
87 |
+
if os.path.exists(fp8_map_path):
|
88 |
+
fp8_map = torch.load(fp8_map_path, map_location=lambda storage, loc: storage)
|
89 |
+
else:
|
90 |
+
raise ValueError(f"Invalid fp8_map path: {fp8_map_path}.")
|
91 |
+
|
92 |
+
fp8_layers = []
|
93 |
+
for key, layer in module.named_modules():
|
94 |
+
if isinstance(layer, nn.Linear) and ('double_blocks' in key or 'single_blocks' in key):
|
95 |
+
fp8_layers.append(key)
|
96 |
+
original_forward = layer.forward
|
97 |
+
layer.weight = torch.nn.Parameter(layer.weight.to(torch.float8_e4m3fn))
|
98 |
+
setattr(layer, "fp8_scale", fp8_map[key].to(dtype=original_dtype))
|
99 |
+
setattr(layer, "original_forward", original_forward)
|
100 |
+
setattr(layer, "forward", lambda input, m=layer: fp8_linear_forward(m, original_dtype, input))
|
101 |
+
|
102 |
+
|