|
|
|
"""This file holding some environment constant for sharing by other files."""
|
|
import os
|
|
import os.path as osp
|
|
import subprocess
|
|
import sys
|
|
from collections import OrderedDict, defaultdict
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
|
|
def is_rocm_pytorch() -> bool:
|
|
"""Check whether the PyTorch is compiled on ROCm."""
|
|
is_rocm = False
|
|
if TORCH_VERSION != 'parrots':
|
|
try:
|
|
from torch.utils.cpp_extension import ROCM_HOME
|
|
is_rocm = True if ((torch.version.hip is not None) and
|
|
(ROCM_HOME is not None)) else False
|
|
except ImportError:
|
|
pass
|
|
return is_rocm
|
|
|
|
TORCH_VERSION = torch.__version__
|
|
|
|
def get_build_config():
|
|
"""Obtain the build information of PyTorch or Parrots."""
|
|
if TORCH_VERSION == 'parrots':
|
|
from parrots.config import get_build_info
|
|
return get_build_info()
|
|
else:
|
|
return torch.__config__.show()
|
|
|
|
try:
|
|
import torch_musa
|
|
IS_MUSA_AVAILABLE = True
|
|
except Exception:
|
|
IS_MUSA_AVAILABLE = False
|
|
|
|
def is_musa_available() -> bool:
|
|
return IS_MUSA_AVAILABLE
|
|
|
|
def is_cuda_available() -> bool:
|
|
"""Returns True if cuda devices exist."""
|
|
return torch.cuda.is_available()
|
|
|
|
def _get_cuda_home():
|
|
if TORCH_VERSION == 'parrots':
|
|
from parrots.utils.build_extension import CUDA_HOME
|
|
else:
|
|
if is_rocm_pytorch():
|
|
from torch.utils.cpp_extension import ROCM_HOME
|
|
CUDA_HOME = ROCM_HOME
|
|
else:
|
|
from torch.utils.cpp_extension import CUDA_HOME
|
|
return CUDA_HOME
|
|
|
|
|
|
def _get_musa_home():
|
|
return os.environ.get('MUSA_HOME')
|
|
|
|
|
|
def collect_env():
|
|
"""Collect the information of the running environments.
|
|
|
|
Returns:
|
|
dict: The environment information. The following fields are contained.
|
|
|
|
- sys.platform: The variable of ``sys.platform``.
|
|
- Python: Python version.
|
|
- CUDA available: Bool, indicating if CUDA is available.
|
|
- GPU devices: Device type of each GPU.
|
|
- CUDA_HOME (optional): The env var ``CUDA_HOME``.
|
|
- NVCC (optional): NVCC version.
|
|
- GCC: GCC version, "n/a" if GCC is not installed.
|
|
- MSVC: Microsoft Virtual C++ Compiler version, Windows only.
|
|
- PyTorch: PyTorch version.
|
|
- PyTorch compiling details: The output of \
|
|
``torch.__config__.show()``.
|
|
- TorchVision (optional): TorchVision version.
|
|
- OpenCV (optional): OpenCV version.
|
|
"""
|
|
from distutils import errors
|
|
|
|
env_info = OrderedDict()
|
|
env_info['sys.platform'] = sys.platform
|
|
env_info['Python'] = sys.version.replace('\n', '')
|
|
|
|
cuda_available = is_cuda_available()
|
|
musa_available = is_musa_available()
|
|
env_info['CUDA available'] = cuda_available
|
|
env_info['MUSA available'] = musa_available
|
|
env_info['numpy_random_seed'] = np.random.get_state()[1][0]
|
|
|
|
if cuda_available:
|
|
devices = defaultdict(list)
|
|
for k in range(torch.cuda.device_count()):
|
|
devices[torch.cuda.get_device_name(k)].append(str(k))
|
|
for name, device_ids in devices.items():
|
|
env_info['GPU ' + ','.join(device_ids)] = name
|
|
|
|
CUDA_HOME = _get_cuda_home()
|
|
env_info['CUDA_HOME'] = CUDA_HOME
|
|
|
|
if CUDA_HOME is not None and osp.isdir(CUDA_HOME):
|
|
if CUDA_HOME == '/opt/rocm':
|
|
try:
|
|
nvcc = osp.join(CUDA_HOME, 'hip/bin/hipcc')
|
|
nvcc = subprocess.check_output(
|
|
f'"{nvcc}" --version', shell=True)
|
|
nvcc = nvcc.decode('utf-8').strip()
|
|
release = nvcc.rfind('HIP version:')
|
|
build = nvcc.rfind('')
|
|
nvcc = nvcc[release:build].strip()
|
|
except subprocess.SubprocessError:
|
|
nvcc = 'Not Available'
|
|
else:
|
|
try:
|
|
nvcc = osp.join(CUDA_HOME, 'bin/nvcc')
|
|
nvcc = subprocess.check_output(f'"{nvcc}" -V', shell=True)
|
|
nvcc = nvcc.decode('utf-8').strip()
|
|
release = nvcc.rfind('Cuda compilation tools')
|
|
build = nvcc.rfind('Build ')
|
|
nvcc = nvcc[release:build].strip()
|
|
except subprocess.SubprocessError:
|
|
nvcc = 'Not Available'
|
|
env_info['NVCC'] = nvcc
|
|
elif musa_available:
|
|
devices = defaultdict(list)
|
|
for k in range(torch.musa.device_count()):
|
|
devices[torch.musa.get_device_name(k)].append(str(k))
|
|
for name, device_ids in devices.items():
|
|
env_info['GPU ' + ','.join(device_ids)] = name
|
|
|
|
MUSA_HOME = _get_musa_home()
|
|
env_info['MUSA_HOME'] = MUSA_HOME
|
|
|
|
if MUSA_HOME is not None and osp.isdir(MUSA_HOME):
|
|
try:
|
|
mcc = osp.join(MUSA_HOME, 'bin/mcc')
|
|
subprocess.check_output(f'"{mcc}" -v', shell=True)
|
|
except subprocess.SubprocessError:
|
|
mcc = 'Not Available'
|
|
env_info['mcc'] = mcc
|
|
try:
|
|
|
|
|
|
|
|
import io
|
|
import sysconfig
|
|
cc = sysconfig.get_config_var('CC')
|
|
if cc:
|
|
cc = osp.basename(cc.split()[0])
|
|
cc_info = subprocess.check_output(f'{cc} --version', shell=True)
|
|
env_info['GCC'] = cc_info.decode('utf-8').partition(
|
|
'\n')[0].strip()
|
|
else:
|
|
|
|
|
|
|
|
import locale
|
|
import os
|
|
from distutils.ccompiler import new_compiler
|
|
ccompiler = new_compiler()
|
|
ccompiler.initialize()
|
|
cc = subprocess.check_output(
|
|
f'{ccompiler.cc}', stderr=subprocess.STDOUT, shell=True)
|
|
encoding = os.device_encoding(
|
|
sys.stdout.fileno()) or locale.getpreferredencoding()
|
|
env_info['MSVC'] = cc.decode(encoding).partition('\n')[0].strip()
|
|
env_info['GCC'] = 'n/a'
|
|
except (subprocess.CalledProcessError, errors.DistutilsPlatformError):
|
|
env_info['GCC'] = 'n/a'
|
|
except io.UnsupportedOperation as e:
|
|
|
|
|
|
|
|
|
|
env_info['MSVC'] = f'n/a, reason: {str(e)}'
|
|
|
|
env_info['PyTorch'] = torch.__version__
|
|
env_info['PyTorch compiling details'] = get_build_config()
|
|
|
|
try:
|
|
import torchvision
|
|
env_info['TorchVision'] = torchvision.__version__
|
|
except ModuleNotFoundError:
|
|
pass
|
|
|
|
try:
|
|
import cv2
|
|
env_info['OpenCV'] = cv2.__version__
|
|
except ImportError:
|
|
pass
|
|
|
|
|
|
return env_info
|
|
|
|
if __name__ == '__main__':
|
|
for name, val in collect_env().items():
|
|
print(f'{name}: {val}') |