Spaces:
Sleeping
Sleeping
File size: 8,016 Bytes
f4ef15d 7e64e0c f4ef15d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
"""
UPDATED JANUARY 21 - 2025
To fix the HF API TOKEN STUFF___DONE
"""
import datetime, random, string
import gradio as gr
#from openai import OpenAI
from gradio_client import Client
from PIL import Image
from rich.console import Console
import os
from huggingface_hub import InferenceClient
console = Console(width=80)
theme=gr.themes.Default(primary_hue="blue", secondary_hue="pink",
font=[gr.themes.GoogleFont("Lato"), "Arial", "sans-serif"])
def checkHFT(hf_token):
if 'hf_' in hf_token:
return gr.Row(visible=True),gr.Row(visible=True),gr.Row(visible=True),gr.Row(visible=True),"✅HF TOKEN detected"
else:
gr.Warning("⚠️ You don't have a Hugging Face Token set")
return gr.Row(visible=False),gr.Row(visible=False),gr.Row(visible=False),gr.Row(visible=False), "⚠️ You don't have a Hugging Face Token set"
def writehistory(filename,text):
"""
save a string into a logfile with python file operations
filename -> str pathfile/filename
text -> str, the text to be written in the file
"""
with open(f'{filename}', 'a', encoding='utf-8') as f:
f.write(text)
f.write('\n')
f.close()
def genRANstring(n):
"""
n = int number of char to randomize
Return -> str, the filename with n random alphanumeric charachters
"""
N = n
res = ''.join(random.choices(string.ascii_uppercase +
string.digits, k=N))
return f'Logfile_{res}.txt'
LOGFILENAME = genRANstring(5)
################## STABLE DIFFUSION PROMPT ##############################
def createSDPrompt(token,headers):
#bruteText = bruteText.replace('\n\n','\n')
SD_prompt = f'''Create a prompt for Stable Diffusion based on the information below. Return only the prompt.\n---\n{headers}\n\nPROMPT:'''
client = InferenceClient(token=token)
messages = [{"role": "user", "content": SD_prompt}]
completion = client.chat.completions.create(
model="Qwen/Qwen2.5-72B-Instruct",
messages=messages,
max_tokens=500
)
print(completion.choices[0].message.content)
ImageGEN_prompt = completion.choices[0].message.content
return ImageGEN_prompt
############### CREATE IMAGE ##########################
def CreateImage(token,ImageGEN_prompt):
from gradio_client import Client
from gradio_client import handle_file
from PIL import Image
client = Client("stabilityai/stable-diffusion-3.5-large",hf_token=token)
result = client.predict(
prompt=ImageGEN_prompt,
negative_prompt='blur',
seed=0,
randomize_seed=True,
width=1360,
height=768,
guidance_scale=4.5,
num_inference_steps=30,
api_name="/infer"
)
############ SAVE IMAGE ##########################
from gradio_client import handle_file
temp = result[0]
from PIL import Image
image = Image.open(temp)
imagename = datetime.datetime.strftime(datetime.datetime.now(),'IMage_%Y-%m-%d_%H-%M-%S.png')
image.save(imagename)
print(f'Image saved as {imagename}...')
return image, imagename
def openDIR():
import os
current_directory = os.getcwd()
print("Current Directory:", current_directory)
os.system(f'start explorer "{current_directory}"')
############# TWEET GENERATION #########################
def createTweets(token,bruteText):
Tweet_prompt = f"Read the following newsletter. rewrite it into 3 twitter posts in English, in progression.\n---\n{bruteText}"
from rich.console import Console
console = Console(width=80)
# using https://huggingface.co/spaces/eswardivi/phi-4
client = Client("eswardivi/phi-4",hf_token=token)
result = client.predict(
message=Tweet_prompt,
param_2=0.7,
param_3=True,
param_4=512,
api_name="/chat"
)
print(result)
from rich.console import Console
console = Console(width=80)
tweet1 = result.split('1:**')[1].split('\n\n')[0]
tweet2 = result.split('2:**')[1].split('\n\n')[0]
tweet3 = result.split('3:**')[1]
console.print(tweet1)
console.rule()
console.print(tweet2)
console.rule()
console.print(tweet3)
console.rule()
return tweet1,tweet2, tweet3
#OR
def createTweets2(token,bruteText):
# Using https://huggingface.co/spaces/Qwen/Qwen2.5-72B-Instruct
Tweet_prompt = f"Read the following newsletter. rewrite it into 3 twitter posts in English, in progression.\n---\n{bruteText}"
client = Client("Qwen/Qwen2.5-72B-Instruct",hf_token=token)
result = client.predict(
query=Tweet_prompt,
history=[],
system="You are Qwen, created by Alibaba Cloud. You are a helpful assistant.",
api_name="/model_chat"
)
twitposts = result[1][0][1]
console.print(twitposts)
tweet1 = twitposts.split('Post 1:')[1].split('\n\n')[0]
tweet2 = twitposts.split('Post 2:')[1].split('\n\n')[0]
tweet3 = twitposts.split('Post 3:')[1]
console.print(tweet1)
console.rule()
console.print(tweet2)
console.rule()
console.print(tweet3)
console.rule()
return twitposts
with gr.Blocks(fill_width=True,theme=theme) as demo:
# INTERFACE
with gr.Row(variant='panel'):
with gr.Column(scale=2):
gr.Image('gradioLOGO.png',width=260)
with gr.Column(scale=4):
gr.HTML(
f"""<h1 style="text-align:center">Advanced POST creation with GRADIO and HF API</h1>""")
alertTEXT = gr.Text("⚠️✅You don't have a Hugging Face Token set",container=False,show_label=False,)
with gr.Column(scale=2):
TOKEN = gr.Textbox(lines=1,label='Your HF token',scale=1)
btn_token = gr.Button("Validate HF token", variant='secondary',size='lg',scale=1)
with gr.Row(visible=False) as row1:
#HYPERPARAMETERS
with gr.Column(scale=1):
CREATE_SDP = gr.Button(variant='huggingface',value='Generate Prompt')
GEN_IMAGE = gr.Button(value='Generate Image',variant='primary')
gr.Markdown('---')
OPEN_FOLDER = gr.Button(variant='secondary',value='Open Image Folder')
clear = gr.ClearButton()
#CHATBOT AREA
with gr.Column(scale=3):
headers = gr.Textbox(lines=8,label='Header of the Article')
with gr.Row(visible=False) as row2:
with gr.Column(scale=2):
SDPrompt = gr.Textbox(lines=8,label='Generated prompt Stable Diffusion')
ImageFilename = gr.Textbox(lines=2,label='Generated Image Filename',show_copy_button=True)
with gr.Column(scale=3):
SDImage = gr.Image(type='pil',label='Generated Image',show_download_button=True, show_fullscreen_button=True,)
with gr.Row(visible=False) as row3:
gr.Markdown('---')
with gr.Row(visible=False) as row4:
#TWITTERPOSTS CREATION SECTION
with gr.Column(scale=2):
body = gr.Textbox(lines=12,label='Body of the Article')
CREATE_TWEET = gr.Button(variant='huggingface',value='Generate Tweets')
#TWEET RESULTS AREA
with gr.Column(scale=1):
tweets1 = gr.Textbox(lines=5,label='🐦 TWEET #1 - 1️⃣',show_copy_button=True)
tweets2 = gr.Textbox(lines=5,label='🐦 TWEET #2 - 2️⃣',show_copy_button=True)
tweets3 = gr.Textbox(lines=5,label='🐦 TWEET #3 - 3️⃣',show_copy_button=True)
CREATE_SDP.click(createSDPrompt, [TOKEN,headers], [SDPrompt])
GEN_IMAGE.click(CreateImage, [TOKEN,SDPrompt], [SDImage,ImageFilename]) #CreateImage
OPEN_FOLDER.click(openDIR, [], []) #Open Current directory
CREATE_TWEET.click(createTweets,[TOKEN,body],[tweets1,tweets2,tweets3])
btn_token.click(checkHFT,[TOKEN],[row1,row2,row3,row4,alertTEXT])
if __name__ == "__main__":
demo.launch() |