File size: 8,016 Bytes
f4ef15d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e64e0c
f4ef15d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
"""
UPDATED JANUARY 21 - 2025
To fix the HF API TOKEN STUFF___DONE
"""

import datetime, random, string
import gradio as gr
#from openai import OpenAI
from gradio_client import Client
from PIL import Image
from rich.console import Console
import os
from huggingface_hub import InferenceClient


console = Console(width=80)
theme=gr.themes.Default(primary_hue="blue", secondary_hue="pink",
                        font=[gr.themes.GoogleFont("Lato"), "Arial", "sans-serif"]) 

def checkHFT(hf_token):
    if 'hf_' in hf_token:
        return gr.Row(visible=True),gr.Row(visible=True),gr.Row(visible=True),gr.Row(visible=True),"✅HF TOKEN detected"
   
    else:
        gr.Warning("⚠️ You don't have a Hugging Face Token set")
        return gr.Row(visible=False),gr.Row(visible=False),gr.Row(visible=False),gr.Row(visible=False), "⚠️ You don't have a Hugging Face Token set"  
    

def writehistory(filename,text):
    """
    save a string into a logfile with python file operations
    filename -> str pathfile/filename
    text -> str, the text to be written in the file
    """
    with open(f'{filename}', 'a', encoding='utf-8') as f:
        f.write(text)
        f.write('\n')
    f.close()

def genRANstring(n):
    """
    n = int number of char to randomize
    Return -> str, the filename with n random alphanumeric charachters
    """
    N = n
    res = ''.join(random.choices(string.ascii_uppercase +
                                string.digits, k=N))
    return f'Logfile_{res}.txt'

LOGFILENAME = genRANstring(5)

################## STABLE DIFFUSION PROMPT ##############################
def createSDPrompt(token,headers):
    #bruteText = bruteText.replace('\n\n','\n')
    SD_prompt = f'''Create a prompt for Stable Diffusion based on the information below. Return only the prompt.\n---\n{headers}\n\nPROMPT:'''
    client = InferenceClient(token=token)
    messages = [{"role": "user", "content": SD_prompt}]
    completion = client.chat.completions.create(
        model="Qwen/Qwen2.5-72B-Instruct",
        messages=messages,
        max_tokens=500
    )
    print(completion.choices[0].message.content)
    ImageGEN_prompt = completion.choices[0].message.content
    return ImageGEN_prompt

############### CREATE IMAGE ##########################
def CreateImage(token,ImageGEN_prompt):
    from gradio_client import Client
    from gradio_client import handle_file
    from PIL import Image
    client = Client("stabilityai/stable-diffusion-3.5-large",hf_token=token)
    result = client.predict(
            prompt=ImageGEN_prompt,
        negative_prompt='blur',
            seed=0,
            randomize_seed=True,
            width=1360,
            height=768,
            guidance_scale=4.5,
            num_inference_steps=30,
            api_name="/infer"
    )
    ############ SAVE IMAGE ##########################
    from gradio_client import handle_file
    temp = result[0]
    from PIL import Image
    image = Image.open(temp)
    imagename = datetime.datetime.strftime(datetime.datetime.now(),'IMage_%Y-%m-%d_%H-%M-%S.png')
    image.save(imagename)
    print(f'Image saved as {imagename}...')
    return image, imagename

def openDIR():
    import os
    current_directory = os.getcwd()
    print("Current Directory:", current_directory)
    os.system(f'start explorer "{current_directory}"')

############# TWEET GENERATION #########################
def createTweets(token,bruteText):   
    Tweet_prompt = f"Read the following newsletter. rewrite it into 3 twitter posts in English, in progression.\n---\n{bruteText}"
    from rich.console import Console
    console = Console(width=80)
    # using https://huggingface.co/spaces/eswardivi/phi-4
    client = Client("eswardivi/phi-4",hf_token=token)
    result = client.predict(
            message=Tweet_prompt,
            param_2=0.7,
            param_3=True,
            param_4=512,
            api_name="/chat"
    )
    print(result)
    from rich.console import Console
    console = Console(width=80)
    tweet1 = result.split('1:**')[1].split('\n\n')[0]
    tweet2 = result.split('2:**')[1].split('\n\n')[0]
    tweet3 = result.split('3:**')[1]
    console.print(tweet1)
    console.rule()
    console.print(tweet2)
    console.rule()
    console.print(tweet3)
    console.rule()
    return tweet1,tweet2, tweet3

#OR
def createTweets2(token,bruteText):
    # Using https://huggingface.co/spaces/Qwen/Qwen2.5-72B-Instruct
    Tweet_prompt = f"Read the following newsletter. rewrite it into 3 twitter posts in English, in progression.\n---\n{bruteText}"
    client = Client("Qwen/Qwen2.5-72B-Instruct",hf_token=token)
    result = client.predict(
            query=Tweet_prompt,
            history=[],
            system="You are Qwen, created by Alibaba Cloud. You are a helpful assistant.",
            api_name="/model_chat"
    )
    twitposts = result[1][0][1]
    console.print(twitposts)

    tweet1 = twitposts.split('Post 1:')[1].split('\n\n')[0]
    tweet2 = twitposts.split('Post 2:')[1].split('\n\n')[0]
    tweet3 = twitposts.split('Post 3:')[1]
    console.print(tweet1)
    console.rule()
    console.print(tweet2)
    console.rule()
    console.print(tweet3)
    console.rule()
    return twitposts


with gr.Blocks(fill_width=True,theme=theme) as demo:
    # INTERFACE
    with gr.Row(variant='panel'):
        with gr.Column(scale=2):
            gr.Image('gradioLOGO.png',width=260)
        with gr.Column(scale=4):
            gr.HTML(
        f"""<h1 style="text-align:center">Advanced POST creation with GRADIO and HF API</h1>""")
            alertTEXT = gr.Text("⚠️✅You don't have a Hugging Face Token set",container=False,show_label=False,)         
        with gr.Column(scale=2):
            TOKEN = gr.Textbox(lines=1,label='Your HF token',scale=1)
            btn_token = gr.Button("Validate HF token", variant='secondary',size='lg',scale=1)
            
             
    with gr.Row(visible=False) as row1:
        #HYPERPARAMETERS
        with gr.Column(scale=1):
            CREATE_SDP = gr.Button(variant='huggingface',value='Generate Prompt')
            GEN_IMAGE = gr.Button(value='Generate Image',variant='primary')
            gr.Markdown('---')
            OPEN_FOLDER = gr.Button(variant='secondary',value='Open Image Folder')
            clear = gr.ClearButton()
        #CHATBOT AREA    
        with gr.Column(scale=3):    
            headers = gr.Textbox(lines=8,label='Header of the Article')
         
    with gr.Row(visible=False) as row2:
        with gr.Column(scale=2):
            SDPrompt = gr.Textbox(lines=8,label='Generated prompt Stable Diffusion')
            ImageFilename = gr.Textbox(lines=2,label='Generated Image Filename',show_copy_button=True)
        with gr.Column(scale=3):
            SDImage = gr.Image(type='pil',label='Generated Image',show_download_button=True, show_fullscreen_button=True,)

    with gr.Row(visible=False) as row3:
        gr.Markdown('---')

    with gr.Row(visible=False) as row4:
        #TWITTERPOSTS CREATION SECTION
        with gr.Column(scale=2):
            body = gr.Textbox(lines=12,label='Body of the Article')
            CREATE_TWEET = gr.Button(variant='huggingface',value='Generate Tweets')
        #TWEET RESULTS AREA    
        with gr.Column(scale=1):    
            tweets1 = gr.Textbox(lines=5,label='🐦 TWEET #1 - 1️⃣',show_copy_button=True)
            tweets2 = gr.Textbox(lines=5,label='🐦 TWEET #2 - 2️⃣',show_copy_button=True)
            tweets3 = gr.Textbox(lines=5,label='🐦 TWEET #3 - 3️⃣',show_copy_button=True)                  

    CREATE_SDP.click(createSDPrompt, [TOKEN,headers], [SDPrompt])
    GEN_IMAGE.click(CreateImage, [TOKEN,SDPrompt], [SDImage,ImageFilename])    #CreateImage
    OPEN_FOLDER.click(openDIR, [], [])    #Open Current directory
    CREATE_TWEET.click(createTweets,[TOKEN,body],[tweets1,tweets2,tweets3])
    btn_token.click(checkHFT,[TOKEN],[row1,row2,row3,row4,alertTEXT])



if __name__ == "__main__":
    demo.launch()