|
import gradio as gr |
|
import numpy as np |
|
from diffusers import StableDiffusionPipeline, DDPMScheduler, DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler |
|
import torch |
|
import PIL.Image |
|
import datetime |
|
|
|
|
|
print(f"Is CUDA available: {torch.cuda.is_available()}") |
|
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}") |
|
|
|
device = "cuda" |
|
|
|
schedulers = { |
|
"DDPMScheduler": DDPMScheduler, |
|
"DDIMScheduler": DDIMScheduler, |
|
"PNDMScheduler": PNDMScheduler, |
|
"LMSDiscreteScheduler": LMSDiscreteScheduler, |
|
"EulerDiscreteScheduler": EulerDiscreteScheduler, |
|
"EulerAncestralDiscreteScheduler": EulerAncestralDiscreteScheduler, |
|
"DPMSolverMultistepScheduler": DPMSolverMultistepScheduler |
|
} |
|
|
|
class Model: |
|
def __init__(self, modelID, schedulerName): |
|
self.modelID = modelID |
|
self.pipe = StableDiffusionPipeline.from_pretrained(modelID, torch_dtype=torch.float16) |
|
self.pipe = self.pipe.to(device) |
|
self.pipe.scheduler = schedulers[schedulerName].from_config(self.pipe.scheduler.config) |
|
self.pipe.enable_xformers_memory_efficient_attention() |
|
|
|
def process(self, |
|
prompt: str, |
|
negative_prompt: str, |
|
guidance_scale:int = 6, |
|
num_images:int = 1, |
|
num_steps:int = 35): |
|
seed = np.random.randint(0, np.iinfo(np.int32).max) |
|
generator = torch.Generator(device).manual_seed(seed) |
|
now = datetime.datetime.now() |
|
print(now) |
|
print(self.modelID) |
|
print(prompt) |
|
print(negative_prompt) |
|
with torch.inference_mode(): |
|
images = self.pipe(prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
guidance_scale=guidance_scale, |
|
num_images_per_prompt=num_images, |
|
num_inference_steps=num_steps, |
|
generator=generator, |
|
height=768, |
|
width=768).images |
|
images = [PIL.Image.fromarray(np.array(img)) for img in images] |
|
return images |
|
|
|
def generateImage(prompt, modelNames, schedulerName): |
|
n_prompt = '(disfigured), ((bad art)), ((deformed)), ((extra limbs)), (((duplicate))), ((morbid)), ((mutilated)), out of frame, extra fingers, mutated hands, poorly drawn eyes, ((poorly drawn hands)), ((poorly drawn face)), (((mutation))), ((ugly)), blurry, ((bad anatomy)), (((bad proportions))), cloned face, body out of frame, out of frame, bad anatomy, gross proportions, (malformed limbs), ((missing arms)), ((missing legs)), (((extra arms))), (((extra legs))), (fused fingers), (too many fingers), (((long neck))), Deformed, blurry' |
|
images = [] |
|
for modelName in modelNames: |
|
image = models[modelName].process(prompt, n_prompt) |
|
images.append(np.array(image[0])) |
|
return images |
|
|
|
def create_demo(): |
|
|
|
prompt = gr.inputs.Textbox(label='Prompt',default='a sprinkled donut sitting on top of a purple cherry apple, colorful hyperrealism') |
|
modelNames = gr.inputs.CheckboxGroup(choices=list(models.keys()), |
|
label="FFusion Test Models", |
|
default=list(models.keys())) |
|
schedulerName = gr.inputs.Dropdown(choices=list(schedulers.keys()), |
|
label="Scheduler", |
|
default=list(schedulers.keys())[0]) |
|
inputs = [prompt, modelNames, schedulerName] |
|
|
|
|
|
result = [gr.outputs.Image(label=f'Output from {model}', type="numpy") for model in models.keys()] |
|
|
|
|
|
def run(prompt, modelNames, schedulerName): |
|
images = generateImage(prompt, modelNames, schedulerName) |
|
return images |
|
|
|
|
|
iface = gr.Interface( |
|
fn=run, |
|
inputs=inputs, |
|
outputs=result, |
|
layout=[ |
|
gr.Markdown("### FFusion.AI - beta Playground"), |
|
inputs, |
|
result |
|
] |
|
) |
|
|
|
return iface |
|
|
|
if __name__ == '__main__': |
|
models = { |
|
"FFUSION.ai-768-BaSE": Model("FFusion/FFusion-BaSE", list(schedulers.keys())[0]), |
|
"FFUSION.ai-v2.1-768-BaSE-alpha-preview": Model("FFusion/di.FFUSION.ai-v2.1-768-BaSE-alpha", list(schedulers.keys())[0]), |
|
"FFusion.ai.Beta-512": Model("FFusion/di.ffusion.ai.Beta512", list(schedulers.keys())[0]) |
|
} |
|
demo = create_demo() |
|
demo.launch() |