Spaces:
Runtime error
Runtime error
Fawaz
commited on
Commit
·
3240876
1
Parent(s):
193c1e4
Add application file
Browse files
app.py
ADDED
|
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""Task22.ipynb
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colab.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1yBvg6i_GsMk--P2nuSG-mfqCDbuIcEpx
|
| 8 |
+
|
| 9 |
+
# Task 2
|
| 10 |
+
- Raghad Al-Rasheed
|
| 11 |
+
- Fawwaz Alsheikhi
|
| 12 |
+
|
| 13 |
+
using the E5 model as the embedding model and translated dataset from huggingface
|
| 14 |
+
"""
|
| 15 |
+
|
| 16 |
+
!pip install sentence_transformers
|
| 17 |
+
|
| 18 |
+
"""## Downloading the Embedding model"""
|
| 19 |
+
|
| 20 |
+
from sentence_transformers import SentenceTransformer
|
| 21 |
+
import nltk
|
| 22 |
+
nltk.download('punkt')
|
| 23 |
+
from nltk.tokenize import word_tokenize
|
| 24 |
+
import math
|
| 25 |
+
from scipy import spatial
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
model = SentenceTransformer("intfloat/multilingual-e5-large").to('cuda')
|
| 29 |
+
|
| 30 |
+
"""## Downloading Translated data from english to arabic"""
|
| 31 |
+
|
| 32 |
+
!pip3 install datasets
|
| 33 |
+
from datasets import load_dataset
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
ds = load_dataset("Helsinki-NLP/news_commentary", "ar-en",split="train")
|
| 37 |
+
|
| 38 |
+
import pandas as pd
|
| 39 |
+
|
| 40 |
+
df = pd.DataFrame(ds['translation'])
|
| 41 |
+
|
| 42 |
+
df['ar']
|
| 43 |
+
|
| 44 |
+
df['ar'][0]
|
| 45 |
+
|
| 46 |
+
"""### Extracting the first 10000 rows out of the data"""
|
| 47 |
+
|
| 48 |
+
df=df.head(10000)
|
| 49 |
+
|
| 50 |
+
df['ar'].shape
|
| 51 |
+
|
| 52 |
+
documents =[doc for doc in df['ar']]
|
| 53 |
+
|
| 54 |
+
documents[9999]
|
| 55 |
+
|
| 56 |
+
"""## Embedding the sentences by rows"""
|
| 57 |
+
|
| 58 |
+
embeddings = model.encode(documents)
|
| 59 |
+
|
| 60 |
+
from sentence_transformers import SentenceTransformer
|
| 61 |
+
import nltk
|
| 62 |
+
nltk.download('punkt')
|
| 63 |
+
from nltk.tokenize import word_tokenize
|
| 64 |
+
import math
|
| 65 |
+
from scipy import spatial
|
| 66 |
+
import scipy
|
| 67 |
+
|
| 68 |
+
def semantic_search(query, embeddings, documents):
|
| 69 |
+
query_embedding = model.encode(query)
|
| 70 |
+
|
| 71 |
+
document_embeddings = embeddings
|
| 72 |
+
scores = [scipy.spatial.distance.cosine(query_embedding, doc) for doc in document_embeddings]
|
| 73 |
+
ls1 = list()
|
| 74 |
+
for i, score in enumerate(scores):
|
| 75 |
+
ls1.append([documents[i],score])
|
| 76 |
+
|
| 77 |
+
print(scores.index(min(scores)))
|
| 78 |
+
most_similar_doc = documents[scores.index(min(scores))]
|
| 79 |
+
print("Most similar document", most_similar_doc)
|
| 80 |
+
return ls1
|
| 81 |
+
|
| 82 |
+
output = semantic_search("ـ لم يكن من السهل قط أن ينخرط المرء في محادثة عقلانية حول قيمة الذهب.",embeddings, documents)
|
| 83 |
+
|
| 84 |
+
documents[999]
|
| 85 |
+
|
| 86 |
+
"""### Extracting top three related sentences"""
|
| 87 |
+
|
| 88 |
+
ranked = sorted(output, key=lambda x: x[1])
|
| 89 |
+
ranked[:3]
|
| 90 |
+
|
| 91 |
+
df
|
| 92 |
+
|
| 93 |
+
"""## using english with arabic to see the semantic search of multilangual model"""
|
| 94 |
+
|
| 95 |
+
df['ar']
|
| 96 |
+
|
| 97 |
+
df['en']
|
| 98 |
+
|
| 99 |
+
df_ar = df['ar'].tolist()[:5000]
|
| 100 |
+
|
| 101 |
+
df_en = df['en'].tolist()[:5000]
|
| 102 |
+
|
| 103 |
+
combined_list = df_ar + df_en
|
| 104 |
+
|
| 105 |
+
print(len(combined_list))
|
| 106 |
+
|
| 107 |
+
embeddings1 = model.encode(combined_list)
|
| 108 |
+
|
| 109 |
+
from sentence_transformers import SentenceTransformer
|
| 110 |
+
import nltk
|
| 111 |
+
nltk.download('punkt')
|
| 112 |
+
from nltk.tokenize import word_tokenize
|
| 113 |
+
import math
|
| 114 |
+
from scipy import spatial
|
| 115 |
+
import scipy
|
| 116 |
+
|
| 117 |
+
def semantic_search(query, embeddings1, combined_list):
|
| 118 |
+
query_embedding = model.encode(query)
|
| 119 |
+
|
| 120 |
+
document_embeddings = embeddings1
|
| 121 |
+
scores = [scipy.spatial.distance.cosine(query_embedding, doc) for doc in document_embeddings]
|
| 122 |
+
ls1 = list()
|
| 123 |
+
for i, score in enumerate(scores):
|
| 124 |
+
ls1.append([combined_list[i],score])
|
| 125 |
+
|
| 126 |
+
print(scores.index(min(scores)))
|
| 127 |
+
most_similar_doc = combined_list[scores.index(min(scores))]
|
| 128 |
+
print("Most similar document", most_similar_doc)
|
| 129 |
+
return ls1
|
| 130 |
+
|
| 131 |
+
output = semantic_search("لذهب بعشرة آلاف دولار؟",embeddings1, combined_list)
|
| 132 |
+
|
| 133 |
+
ranked = sorted(output, key=lambda x: x[1])
|
| 134 |
+
ranked[:3]
|
| 135 |
+
|
| 136 |
+
import gradio as gr
|
| 137 |
+
|
| 138 |
+
demo = gr.Interface(fn=semantic_search,inputs = ["text"], outputs=["text", "text", "text"])
|
| 139 |
+
if __name__ == "__main__":
|
| 140 |
+
demo.launch()
|
| 141 |
+
|