explainability-tool-for-aa / utils /visualizations.py
Anisha Bhatnagar
adding model_name to caching
f6912cd
raw
history blame
22.8 kB
import gradio as gr
import json
import numpy as np
from sklearn.manifold import TSNE
import pickle as pkl
import os
import hashlib
import pandas as pd
import plotly.graph_objects as go
from plotly.colors import sample_colorscale
from gradio import update
import re
from utils.interp_space_utils import compute_clusters_style_representation_3, compute_clusters_g2v_representation, compute_precomputed_regions
from utils.llm_feat_utils import split_features
from utils.gram2vec_feat_utils import get_shorthand, get_fullform
from gram2vec.feature_locator import find_feature_spans
import plotly.io as pio
def clean_text(text: str) -> str:
"""
Cleans the text by replacing HTML tags with their escaped versions.
"""
return text.replace('<','&lt;').replace('>','&gt;').replace('\n', '<br>')
def get_instances(instances_to_explain_path: str = 'datasets/instances_to_explain.json'):
"""
Loads the JSON and returns:
- instances_to_explain: the raw dict/list of instances
- instance_ids: list of keys (if dict) or indices (if list)
"""
instances_to_explain = json.load(open(instances_to_explain_path))
if isinstance(instances_to_explain, dict):
instance_ids = list(instances_to_explain.keys())
else:
instance_ids = list(range(len(instances_to_explain)))
return instances_to_explain, instance_ids
def load_instance(instance_id, instances_to_explain: dict):
"""
Given a selected instance_id and the loaded data,
returns (mystery_html, c0_html, c1_html, c2_html).
"""
# normalize instance_id
try:
iid = int(instance_id)
except ValueError:
iid = instance_id
data = instances_to_explain[iid]
predicted_author = data['latent_rank'][0]
ground_truth_author = data['gt_idx']
header_html = f"""
<div style="border:1px solid #ccc; padding:10px; margin-bottom:10px;">
<h3>Here’s the mystery passage alongside three candidate textsβ€”look for the green highlight to see the predicted author.</h3>
</div>
"""
mystery_text = clean_text(data['Q_fullText'])
mystery_html = f"""
<div style="
border: 2px solid #ff5722; /* accent border */
background: #fff3e0; /* very light matching wash */
border-radius: 6px;
padding: 1em;
margin-bottom: 1em;
">
<h3 style="margin-top:0; color:#bf360c;">Mystery Author</h3>
<p>{clean_text(mystery_text)}</p>
</div>
"""
# Candidate boxes
candidate_htmls = []
for i in range(3):
text = data[f'a{i}_fullText']
title = f"Candidate {i+1}"
extra_style = ""
if ground_truth_author == i:
if ground_truth_author != predicted_author: # highlight the true author only if its different than the predictd one
title += " (True Author)"
extra_style = (
"border: 2px solid #ff5722; "
"background: #fff3e0; "
"padding:10px; "
)
if predicted_author == i:
if predicted_author == ground_truth_author:
title += " (Predicted and True Author)"
else:
title += " (Predicted Author)"
extra_style = (
"border:2px solid #228B22; " # dark green border
"background-color: #e6ffe6; " # light green fill
"padding:10px; "
)
candidate_htmls.append(f"""
<div style="border:1px solid #ccc; padding:10px; {extra_style}">
<h4>{title}</h4>
<p>{clean_text(text)}</p>
</div>
""")
return header_html, mystery_html, candidate_htmls[0], candidate_htmls[1], candidate_htmls[2]
def compute_tsne_with_cache(embeddings: np.ndarray, cache_path: str = 'datasets/tsne_cache.pkl') -> np.ndarray:
"""
Compute t-SNE with caching to avoid recomputation for the same input.
Args:
embeddings (np.ndarray): The input embeddings to compute t-SNE on.
cache_path (str): Path to the cache file.
Returns:
np.ndarray: The t-SNE transformed embeddings.
"""
# Create a hash of the input embeddings to use as a key
hash_key = hashlib.md5(embeddings.tobytes()).hexdigest()
if os.path.exists(cache_path):
with open(cache_path, 'rb') as f:
cache = pkl.load(f)
else:
cache = {}
if hash_key in cache:
return cache[hash_key]
else:
print("Computing t-SNE")
tsne_result = TSNE(n_components=2, learning_rate='auto',
init='random', perplexity=10, random_state=42, metric='cosine').fit_transform(embeddings)
#tsne_result = umap.UMAP(n_components=2, n_neighbors=30, min_dist=0.3, metric='cosine').fit_transform(embeddings)
cache[hash_key] = tsne_result
with open(cache_path, 'wb') as f:
pkl.dump(cache, f)
return tsne_result
def load_interp_space(cfg):
interp_space_path = cfg['interp_space_path'] + 'interpretable_space.pkl'
interp_space_rep_path = cfg['interp_space_path'] + 'interpretable_space_representations.json'
gram2vec_feats_path = cfg['interp_space_path'] + '/../gram2vec_feats.csv'
clustered_authors_path = cfg['interp_space_path'] + 'train_authors.pkl'
max_num_docs_per_authors = cfg['max_num_docs_per_authors']
max_num_bg_authors = cfg['max_num_bg_authors']
# Load authors embeddings and their cluster labels
clustered_authors_df = pd.read_pickle(clustered_authors_path).iloc[:max_num_bg_authors]
clustered_authors_df['fullText'] = clustered_authors_df.fullText.map(lambda list: '\n\n'.join(['Document {}: {}'.format(i+1, text) for i, text in enumerate(list[:max_num_docs_per_authors])]))
print('Average atuhor text length:', clustered_authors_df.fullText.map(lambda x: len(x.split())).mean())
author_embedding = clustered_authors_df.author_embedding.tolist()
author_labels = clustered_authors_df.cluster_label.tolist()
author_ids = clustered_authors_df.authorID.tolist()
# filter out gram2vec features that doesn't have representation
clustered_authors_df['gram2vec_feats'] = clustered_authors_df.gram2vec_feats.apply(lambda feats: [feat for feat in feats if get_shorthand(feat) is not None])
# Load a list of gram2vec features --> we use it to distinguish the cluster representations whether they come from gram2vec or llms
gram2vec_df = pd.read_csv(gram2vec_feats_path)
gram2vec_feats = gram2vec_df.gram2vec_feats.unique().tolist()
# Load interpretable space embeddings and the representation of each dimension
interpretable_space = pkl.load(open(interp_space_path, 'rb'))
del interpretable_space[-1] #DBSCAN generate a cluster -1 of all outliers. We don't want this cluster
dimension_to_latent = {key: interpretable_space[key][0] for key in interpretable_space}
interpretable_space_rep_df = pd.read_json(interp_space_rep_path)
#dimension_to_style = {x[0]: x[1] for x in zip(interpretable_space_rep_df.cluster_label.tolist(), interpretable_space_rep_df[style_feat_clm].tolist())}
dimension_to_style = {x[0]: [feat[0] for feat in sorted(x[1].items(), key=lambda feat_w:-feat_w[1])] for x in zip(interpretable_space_rep_df.cluster_label.tolist(), interpretable_space_rep_df[cfg['style_feat_clm']].tolist())}
if cfg['only_llm_feats']:
#print('only llm feats')
dimension_to_style = {dim[0]:[feat for feat in dim[1] if feat not in gram2vec_feats] for dim in dimension_to_style.items()}
if cfg['only_gram2vec_feats']:
#print('only gra2vec feats')
dimension_to_style = {dim[0]:[feat for feat in dim[1] if feat in gram2vec_feats] for dim in dimension_to_style.items()}
# Take top features from g2v and llm
def take_to_k_llm_and_g2v_feats(feats_list, top_k):
g2v_feats = [x for x in feats_list if x in gram2vec_feats][:top_k]
llm_feats = [x for x in feats_list if x not in gram2vec_feats][:top_k]
return g2v_feats + llm_feats
dimension_to_style = {dim[0]: take_to_k_llm_and_g2v_feats(dim[1], cfg['top_k']) for dim in dimension_to_style.items()}
return {
'dimension_to_latent': dimension_to_latent,
'dimension_to_style' : dimension_to_style,
'author_embedding' : author_embedding,
'author_labels' : author_labels,
'author_ids' : author_ids,
'clustered_authors_df' : clustered_authors_df
}
# Function to process G2V features and create display choices
def format_g2v_features_for_display(g2v_features_with_scores):
"""
Convert G2V features with z-scores into display format for Gradio radio buttons.
Args:
g2v_features_with_scores: List of tuples like:
[('None', None), ('Feature Name', z_score), ...]
Returns:
tuple: (display_choices, original_values)
"""
display_choices = []
original_values = []
for item in g2v_features_with_scores:
if len(item) == 2:
feature_name, z_score = item
# Handle None case
if feature_name == "None" or z_score is None:
display_choices.append("None")
original_values.append("None")
else:
# Convert numpy float to regular float if needed
if hasattr(z_score, 'item'):
z_score = float(z_score.item())
else:
z_score = float(z_score)
# Create display string with z-score
display_string = f"{feature_name} | [Z={z_score:.2f}]"
display_choices.append(display_string)
original_values.append(feature_name)
else:
# Handle unexpected format
display_choices.append(str(item))
original_values.append(str(item))
return display_choices, original_values
#function to handle zoom events
def handle_zoom(event_json, bg_proj, bg_lbls, clustered_authors_df, task_authors_df):
"""
event_json – stringified JSON from JS listener
bg_proj – (N,2) numpy array with 2D coordinates
bg_lbls – list of N author IDs
clustered_authors_df – pd.DataFrame containing authorID and final_attribute_name
"""
print("[INFO] Handling zoom event")
if not event_json:
return gr.update(value=""), gr.update(value=""), None, None, None
try:
ranges = json.loads(event_json)
(x_min, x_max) = ranges["xaxis"]
(y_min, y_max) = ranges["yaxis"]
except (json.JSONDecodeError, KeyError, ValueError):
return gr.update(value=""), gr.update(value=""), None, None, None
# Find points within the zoomed region
mask = (
(bg_proj[:, 0] >= x_min) & (bg_proj[:, 0] <= x_max) &
(bg_proj[:, 1] >= y_min) & (bg_proj[:, 1] <= y_max)
)
visible_authors = [lbl for lbl, keep in zip(bg_lbls, mask) if keep]
print(f"[INFO] Zoomed region includes {len(visible_authors)} authors:{visible_authors}")
print(f"Task authors: {len(task_authors_df)}, Clustered authors: {len(clustered_authors_df)}")
merged_authors_df = pd.concat([task_authors_df, clustered_authors_df])
print(f"Merged authors DataFrame:\n{len(merged_authors_df)}")
#style_analysis_response = {'features': [], 'spans': []}
style_analysis_response = compute_clusters_style_representation_3(
background_corpus_df=merged_authors_df,
cluster_ids=visible_authors,
cluster_label_clm_name='authorID',
)
llm_feats = ['None'] + style_analysis_response['features']
merged_authors_df = pd.concat([task_authors_df, clustered_authors_df])
g2v_feats = compute_clusters_g2v_representation(
background_corpus_df=merged_authors_df,
author_ids=visible_authors,
other_author_ids=[],
features_clm_name='g2v_vector'
)
# ── Span-existence filter on task authors in the zoom ───────────────────
# Keep only features that have at least one detected span in any of the
# visible task authors' texts
visible_task_authors = task_authors_df[task_authors_df['authorID'].isin(visible_authors)]
if visible_task_authors.empty:
visible_task_authors = task_authors_df
def _to_text(x):
return '\n\n =========== \n\n'.join(x) if isinstance(x, list) else x
task_texts = [_to_text(x) for x in visible_task_authors['fullText'].tolist()]
filtered_g2v_feats = []
for feat in g2v_feats:
try:
# `feat` is shorthand already (e.g., 'pos_bigrams:NOUN PROPN')
if any(find_feature_spans(txt, feat[0]) for txt in task_texts):
filtered_g2v_feats.append(feat)
else:
print(f"[INFO] Dropping G2V feature with no spans in task texts: {feat}")
except Exception as e:
print(f"[WARN] Error while checking spans for {feat}: {e}")
# Convert to human readable for display
HR_g2v_list = []
for feat in filtered_g2v_feats:
HR_g2v = get_fullform(feat[0])
print(f"\n\n feat: {feat} ---> Human Readable: {HR_g2v}")
if HR_g2v is None:
print(f"Skipping Gram2Vec feature without human readable form: {feat}")
else:
HR_g2v_list.append((HR_g2v, feat[1])) #get the score
HR_g2v_list = [("None", None)] + HR_g2v_list
print(f"[INFO] Found {len(llm_feats)} LLM features and {len(g2v_feats)} Gram2Vec features in the zoomed region.")
print(f"[INFO] unfiltered g2v features: {g2v_feats}")
print(f"[INFO] LLM features: {llm_feats}")
HR_g2v_list, _ = format_g2v_features_for_display(HR_g2v_list)
print(f"[INFO] Gram2Vec features: {HR_g2v_list}")
return (
gr.update(choices=llm_feats, value=llm_feats[0]),
gr.update(choices=HR_g2v_list, value=HR_g2v_list[0]),
style_analysis_response,
llm_feats,
visible_authors
)
# return gr.update(value="\n".join(llm_feats).join("\n").join(g2v_feats)), llm_feats, g2v_feats
def handle_zoom_with_retries(event_json, bg_proj, bg_lbls, clustered_authors_df, task_authors_df):
"""
event_json – stringified JSON from JS listener
bg_proj – (N,2) numpy array with 2D coordinates
bg_lbls – list of N author IDs
clustered_authors_df – pd.DataFrame containing authorID and final_attribute_name
task_authors_df – pd.DataFrame containing authorID and final_attribute_name
"""
print("[INFO] Handling zoom event with retries")
for attempt in range(3):
try:
return handle_zoom(event_json, bg_proj, bg_lbls, clustered_authors_df, task_authors_df)
except Exception as e:
print(f"[ERROR] Attempt {attempt + 1} failed: {e}")
if attempt < 2:
print("[INFO] Retrying...")
return (
None,
None,
None,
None,
None
)
def visualize_clusters_plotly(iid, cfg, instances, model_radio, custom_model_input, task_authors_df, background_authors_embeddings_df, pred_idx=None, gt_idx=None):
model_name = model_radio if model_radio != "Other" else custom_model_input
embedding_col_name = f'{model_name.split("/")[-1]}_style_embedding'
print(background_authors_embeddings_df.columns)
print("Generating cluster visualization")
iid = int(iid)
interp = load_interp_space(cfg)
# dim2lat = interp['dimension_to_latent']
style_names = interp['dimension_to_style']
# bg_emb = np.array(interp['author_embedding'])
# print(f"bg_emb shape: {bg_emb.shape}")
#replace with cached embedddings
bg_emb = np.array(background_authors_embeddings_df[embedding_col_name].tolist()) #placeholder for background embeddings
print(f"bg_emb shape: {bg_emb.shape}")
# print("interp.keys():", interp.keys())
#bg_lbls = interp['author_labels']
#bg_ids = interp['author_ids']
bg_ids = task_authors_df['authorID'].tolist() + background_authors_embeddings_df['authorID'].tolist()
# inst = instances[iid]
# print("inst.keys():", inst.keys())
# q_lat = np.array(inst['author_latents'][:1])
# print(f"q_lat shape: {q_lat.shape}")
# c_lat = np.array(inst['author_latents'][1:])
# print(f"c_lat shape: {c_lat.shape}")
# pred_idx = inst['latent_rank'][0]
# gt_idx = inst['gt_idx']
q_lat = np.array(task_authors_df[embedding_col_name].iloc[0]).reshape(1, -1) # Mystery author latent
print(f"q_lat shape: {q_lat.shape}")
c_lat = np.array(task_authors_df[embedding_col_name].iloc[1:].tolist()) # Candidate authors latents
print(f"c_lat shape: {c_lat.shape}")
# cent_emb = np.array([v for _,v in dim2lat.items()])
# cent_lbl = np.array([k for k,_ in dim2lat.items()])
# all_emb = np.vstack([q_lat, c_lat, bg_emb, cent_emb])
all_emb = np.vstack([q_lat, c_lat, bg_emb])
proj = compute_tsne_with_cache(all_emb)
# split
q_proj = proj[0]
c_proj = proj[1:4]
bg_proj = proj
# 2) build Plotly figure
fig = go.Figure()
fig.update_layout(
template='plotly_white',
margin=dict(l=40,r=40,t=60,b=40),
autosize=True,
hovermode='closest',
# Enable zoom events
dragmode='zoom'
)
# uncomment the following line to show background authors
## background authors (light grey dots)
fig.add_trace(go.Scattergl(
x=bg_proj[:,0], y=bg_proj[:,1],
mode='markers',
marker=dict(size=6, color="#d3d3d3"),# color=bg_colors
name='Background authors',
hoverinfo='skip'
))
# three candidates
marker_syms = ['diamond','pentagon','x']
for i in range(3):
# label = f"Candidate {i+1}" + (" (predicted)" if i==pred_idx else "")
base = f"Candidate {i+1}"
# pick the right suffix
if i == pred_idx and i == gt_idx:
suffix = " (Predicted & Ground Truth)"
elif i == pred_idx:
suffix = " (Predicted)"
elif i == gt_idx:
suffix = "(Ground Truth)"
else:
suffix = ""
label = base + suffix
fig.add_trace(go.Scattergl(
x=[c_proj[i,0]], y=[c_proj[i,1]],
mode='markers',
marker=dict(symbol=marker_syms[i], size=12, color='darkblue'),
name=label,
hoverinfo='skip'
))
# query author
fig.add_trace(go.Scattergl(
x=[q_proj[0]], y=[q_proj[1]],
mode='markers',
marker=dict(symbol='star', size=14, color='red'),
name='Mystery author',
hoverinfo='skip'
))
# ── Arrowed annotations for mystery + candidates ──────────────────────────
# Mystery author (red star)
fig.add_annotation(
x=q_proj[0], y=q_proj[1],
xref='x', yref='y',
text="Mystery",
showarrow=True,
arrowhead=2,
arrowsize=1,
arrowwidth=1.5,
ax=40, # tail offset in pixels: moves the label 40px to the right
ay=-40, # moves the label 40px up
font=dict(color='red', size=12)
)
# Candidate authors (dark blue β—†)
offsets = [(-40, -30), (40, -30), (0, 40)] # [(ax,ay) for Cand1, Cand2, Cand3]
for i in range(3):
# build the right label
if i == pred_idx and i == gt_idx:
label = f"Candidate {i+1} (Predicted & Ground Truth)"
elif i == pred_idx:
label = f"Candidate {i+1} (Predicted)"
elif i == gt_idx:
label = f"Candidate {i+1} (Ground Truth)"
else:
label = f"Candidate {i+1}"
fig.add_annotation(
x=c_proj[i,0], y=c_proj[i,1],
xref='x', yref='y',
text= label,
showarrow=True,
arrowhead=2,
arrowsize=1,
arrowwidth=1.5,
ax=offsets[i][0],
ay=offsets[i][1],
font=dict(color='darkblue', size=12)
)
# Compute precomputed regions
bg_proj_for_regions = proj[4:] # Background projections
bg_ids_for_regions = bg_ids[4:] # Background IDs
# Compute precomputed regions
mystery_id = task_authors_df['authorID'].iloc[0] # Mystery author ID
candidate_ids = task_authors_df['authorID'].iloc[1:4].tolist() # 3 candidate IDs
precomputed_regions = compute_precomputed_regions(
bg_proj_for_regions, bg_ids_for_regions, q_proj, c_proj, model_name
)
# Create choices for radio buttons
pc=json.loads(precomputed_regions)
region_choices = ["None"] + list(pc.keys())
print('Done processing....')
return (
fig,
# update(choices=display_clusters, value=display_clusters[cluster_label_query]),
style_names,
bg_proj, # Return background points
bg_ids, # Return background labels
background_authors_embeddings_df, # Return the DataFrame for zoom handling
precomputed_regions, # Return region choices
gr.update(choices=region_choices, value="None")
)
# return fig, update(choices=feature_list, value=feature_list[0]),feature_list
def trigger_precomputed_region(region_name, precomputed_regions):
"""
Simulate a zoom event for a precomputed region.
Returns the JSON payload that would be sent to axis_ranges.
"""
print(f"[INFO] Triggering precomputed region: {region_name}")
print(f"precomputed_regions type: {type(precomputed_regions)}")
# print(f"precomputed_regions content: {precomputed_regions}")
try:
# Parse the JSON string back to dictionary
# precomputed_regions = json.loads(precomputed_regions) if precomputed_regions else {}
print(f"Available regions: {len(list(precomputed_regions.keys()))}")
# print(f"Available regions: {list(precomputed_regions.keys())}")
if region_name == "None" or region_name not in precomputed_regions:
return ""
region = precomputed_regions[region_name]
payload = region['bbox']
json_payload = {
'xaxis': [float(payload['xaxis'][0]), float(payload['xaxis'][1])],
'yaxis': [float(payload['yaxis'][0]), float(payload['yaxis'][1])]
}
# js_code = trigger_plot_zoom_js(region_name, precomputed_regions)
return json.dumps(json_payload)#, js_code
except Exception as e:
print(f"[ERROR] Failed to trigger precomputed region: {e}")
return ""