File size: 9,091 Bytes
9a097e7 6aef776 9a097e7 6aef776 a1e49f6 6aef776 9a097e7 6aef776 a1e49f6 6aef776 a1e49f6 6aef776 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import ast
import os
import json
import pickle
import numpy as np
from tqdm import tqdm
import pandas as pd
from datetime import datetime
import yaml
# Import your actual modules exactly as app.py does
from utils.visualizations import get_instances, load_interp_space, trigger_precomputed_region, handle_zoom_with_retries
from utils.ui import update_task_display
def load_config(path="config/config.yaml"):
with open(path, "r") as f:
return yaml.safe_load(f)
def precompute_all_caches(
models_to_test=None,
instances_to_process=None,
config_path="config/config.yaml"
):
"""
Precompute all cache files using the EXACT same methods as app.py.
This follows the exact flow: load_task β update_task_display β run_visualization
"""
if models_to_test is None:
models_to_test = [
'gabrielloiseau/LUAR-MUD-sentence-transformers',
'gabrielloiseau/LUAR-CRUD-sentence-transformers',
'miladalsh/light-luar',
'AnnaWegmann/Style-Embedding'
]
print("=" * 60)
print("CACHE PRECOMPUTATION STARTED")
print(f"Timestamp: {datetime.now()}")
print(f"Models to test: {len(models_to_test)}")
print("=" * 60)
# Load configuration and instances EXACTLY like app.py
cfg = load_config(config_path)
print(f"Configuration loaded from {config_path}")
print(f"config : \n{cfg}")
instances, instance_ids = get_instances(cfg['instances_to_explain_path'])
interp = load_interp_space(cfg)
clustered_authors_df = interp['clustered_authors_df']
if instances_to_process is None:
instances_to_process = instance_ids
print(f"Processing {len(instances_to_process)} instances with {len(models_to_test)} models")
total_combinations = len(models_to_test) * len(instances_to_process)
current_combination = 0
cache_stats = {
'embeddings_generated': 0,
'tsne_computed': 0,
'regions_computed': 0,
'errors': []
}
for model_name in models_to_test:
print(f"\n{'=' * 40}")
print(f"PROCESSING MODEL: {model_name}")
print(f"{'=' * 40}")
for instance_id in tqdm(instances_to_process, desc=f"Processing instances for {model_name.split('/')[-1]}"):
current_combination += 1
try:
print(f"\n[{current_combination}/{total_combinations}] Processing Instance {instance_id}")
# STEP 1: Replicate the exact flow from load_button.click()
print(" β Replicating load_button.click() flow...")
# Create ground truth (using placeholder since we're caching)
ground_truth_author = None # Will be determined by the instance data
# Call update_task_display EXACTLY like app.py does
task_results = update_task_display(
mode="Predefined HRS Task", # Always use predefined for caching
iid=f"Task {instance_id}",
instances=instances,
background_df=clustered_authors_df,
mystery_file=None, # Not used for predefined
cand1_file=None, # Not used for predefined
cand2_file=None, # Not used for predefined
cand3_file=None, # Not used for predefined
true_author=ground_truth_author,
model_radio=model_name,
custom_model_input=""
)
# Extract the results exactly like app.py expects
(header_html, mystery_html, c0_html, c1_html, c2_html,
mystery_state, c0_state, c1_state, c2_state,
task_authors_embeddings_df, background_authors_embeddings_df,
predicted_author, ground_truth_author) = task_results
print(f" β Embeddings generated for {len(task_authors_embeddings_df)} task authors")
print(f" β Background embeddings: {len(background_authors_embeddings_df)} authors")
cache_stats['embeddings_generated'] += 1
# STEP 2: Replicate the exact flow from run_btn.click()
print(" β Replicating run_btn.click() flow...")
# Call visualize_clusters_plotly EXACTLY like app.py does
viz_results = visualize_clusters_plotly(
iid=int(instance_id),
cfg=cfg,
instances=instances,
model_radio=model_name,
custom_model_input="",
task_authors_df=task_authors_embeddings_df,
background_authors_embeddings_df=background_authors_embeddings_df,
pred_idx=predicted_author,
gt_idx=ground_truth_author
)
# Extract results exactly like app.py expects
(fig, style_names, bg_proj, bg_ids, bg_authors_df,
precomputed_regions_state, precomputed_regions_radio) = viz_results
print(f" β t-SNE projection computed")
print(f" β Precomputed regions generated")
cache_stats['tsne_computed'] += 1
cache_stats['regions_computed'] += 1
print(f" β Instance {instance_id} with model {model_name} completed successfully")
print(" β Testing region zoom simulation...")
if precomputed_regions_state:
regions_dict = ast.literal_eval(precomputed_regions_state)
test_regions = list(regions_dict.keys())
for region_name in test_regions:
try:
print(f" β Testing region: {region_name}")
# Step 3a: Simulate region selection (trigger_precomputed_region)
zoom_payload = trigger_precomputed_region(region_name, regions_dict)
if zoom_payload: # Only proceed if we got a valid zoom payload
# Step 3b: Simulate axis_ranges.change() (handle_zoom_with_retries)
zoom_results = handle_zoom_with_retries(
event_json=zoom_payload,
bg_proj=bg_proj,
bg_lbls=bg_ids,
clustered_authors_df=background_authors_embeddings_df,
task_authors_df=task_authors_embeddings_df
)
# Extract results like app.py does
(features_rb_update, gram2vec_rb_update, llm_style_feats_analysis,
feature_list_state, visible_zoomed_authors) = zoom_results
print(f" β LLM features cached for region: {region_name}")
except Exception as e:
print(f" β Failed to cache features for region {region_name}: {e}")
# Continue with other regions even if one fails
continue
except Exception as e:
error_msg = f"Error processing instance {instance_id} with model {model_name}: {str(e)}"
print(f" β {error_msg}")
cache_stats['errors'].append(error_msg)
import traceback
traceback.print_exc()
continue
# Print final statistics
print("\n" + "=" * 60)
print("CACHE PRECOMPUTATION COMPLETED")
print("=" * 60)
print(f"Embeddings generated: {cache_stats['embeddings_generated']}")
print(f"t-SNE projections computed: {cache_stats['tsne_computed']}")
print(f"Region sets computed: {cache_stats['regions_computed']}")
print(f"Errors encountered: {len(cache_stats['errors'])}")
if cache_stats['errors']:
print("\nERROR DETAILS:")
for error in cache_stats['errors']:
print(f" - {error}")
return cache_stats
# Import the exact functions your app uses
from utils.visualizations import visualize_clusters_plotly
if __name__ == "__main__":
# Test with a small subset first
instances=[i for i in range(20)] # First 20 instances for testing
cache_stats = precompute_all_caches(
models_to_test=[
'gabrielloiseau/LUAR-MUD-sentence-transformers'
],
instances_to_process=instances
)
print(f"\nCache precomputation completed with {len(cache_stats['errors'])} errors.") |